Citation: Li Xuedong, Lang Xiandong, Song Qingwen, Guo Yakun, He Liangnian. Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO2[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 744-751. doi: 10.6023/cjoc201512037 shu

Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO2

  • Corresponding author: He Liangnian, 
  • Received Date: 25 December 2015
    Available Online: 30 January 2016

    Fund Project: 国家自然科学基金(Nos.21472103,21121002) (Nos.21472103,21121002)教育部博士点基金(No.20130031110013) (No.20130031110013)国家基础科学人才培养基金(No.J1103306)资助项目. (No.J1103306)

  • β-Oxopropylcarbamates constitute an important kind of organic compounds, owing to the extensive applications in agrochemicals, pharmaceuticals, organic synthesis, and protection of amino group. In this article, an efficient and atom-economical Cu(I) catalyzed three-component reaction of propargylic alcohols, secondary amines and CO2 has been developed under atmospheric pressure, affording various β-oxopropylcarbamates in high yields with high selectivity by controlling the concentration of O2. This protocol avoids the use of high pressure of CO2 and provides an extremely simple way to access the synthetically useful β-oxopropylcarbamates.
  • 加载中
    1. [1]

      [1] (a) He, L.-N. CO2 Chemistry, Science Press, Beijing, 2013 (in Chinese). (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)

    2. [2]

      (b) Otto, A.; Grube, T.; Schiebahna, S.; Stolten, D. Energy Environ. Sci. 2015, 8, 3283.

    3. [3]

      [2] Li, J. H.; Jia, L. Q.; Jiang, H. F. Chin. J. Org. Chem. 2000, 20, 293 (in Chinese). (李金恒, 贾兰齐, 江焕峰, 有机化学, 2000, 20, 293.)

    4. [4]

      [3] (a) Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

    5. [5]

      (b) Gao, J.; Miao, C.; Wang, J.; He, L.-N. Petrochemical Technol. 2010, 39, 465 (in Chinese). (高健, 苗成霞, 汪靖伦, 何良年, 石油化工, 2010, 39, 465.)

    6. [6]

      (c) Ji, D. F.; Lu, X. B.; He, R.; Zhan, X. L.; Yang, Y. R. Chem. J. Chin. Univ. 2001, 22, 1720 (in Chinese). (季东锋, 吕小兵, 何仁, 詹晓力, 阳永荣, 高等学校化学学报, 2001, 22, 1720.)

    7. [7]

      [4] For trepresentative reviews and reports on carbon capture and utilization, see: (a) Li, Y. N.; Ma, R.; He, L.-N.; Diao, Z. F. Catal. Sci. Technol. 2014, 4, 1498.

    8. [8]

      (b) Li, Y. N.; He, L.-N. Chin. Sci.Bull. 2015, 60, 1465 (in Chinese). (李雨浓, 何良年, 科学通报, 2015, 60, 1465.)

    9. [9]

      (c) Yang, Z. Z.; Zhao, Y. N.; He, L.-N. RSC Adv. 2011, 1, 545.

    10. [10]

      (d) Yang, Z. Z.; He, L.-N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.

    11. [11]

      (e) Liu, A. H.; Ma, R.; Song, C.; Yang, Z. Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y. N.; Yu, B.; Song, Q. W. Angew. Chem., Int. Ed. 2012, 51, 11306.

    12. [12]

      (f) Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L.-N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem. 2014, 7, 1484.

    13. [13]

      [5] (a) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.

    14. [14]

      (b) He, M.; Sun, Y.; Han, B. Chin. Sci. Bull. 2015, 60, 1421 (in Chinese). (何鸣元, 孙予罕, 韩布兴, 科学通报, 2015, 60, 1421.)

    15. [15]

      [6] Wu, T. T.; Huang, J.; Arrington, N. D.; Dill, G. M. J. Agric. Food Chem. 1987, 35, 817.

    16. [16]

      [7] Vauthey, I.; Valot, F.; Gozzi, C.; Fache, F.; Lemaire, M. Tetrahedron Lett. 2000, 41, 6347.

    17. [17]

      [8] McGhee, W. D.; Pan, Y.; Riley, D. P. J. Chem. Soc., Chem. Commun. 1994, 6, 699.

    18. [18]

      [9] McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem. 1995, 60, 2820.

    19. [19]

      [10] Salvatore, R. N.; Shin, S.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2001, 66, 1035.

    20. [20]

      [11] Yoshida, M.; Hara, N.; Okuyama, S. Chem. Commun. 2000, 151.

    21. [21]

      [12] Srivastava, R.; Srinivas, D.; Ratnasamy, P. Appl. Catal. A: Gen. 2005, 289, 128.

    22. [22]

      [13] Kong, D. L.; He, L. N.; Wang, J. Q. Synth. Commun. 2011, 41, 3298.

    23. [23]

      [14] Ion, A.; Van Doorslaer, C.; Parvulescu, V.; Jacobs, P.; De Vos, D. Green Chem. 2008, 10, 111.

    24. [24]

      [15] Chaturvedi, D.; Kumar, A.; Ray, S. Tetrahedron Lett. 2003, 44, 7637.

    25. [25]

      [16] Abla, M.; Choi, J. C.; Sakakura, T. Chem. Commun. 2001, 2238.

    26. [26]

      [17] Mahe, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1989, 54, 1518.

    27. [27]

      [18] Selva, M.; Tundo, P.; Perosa, A. Tetrahedron Lett. 2002, 43, 1217.

    28. [28]

      [19] Dell'Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Chem. Rev. 2003, 103, 3857.

    29. [29]

      [20] Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.

    30. [30]

      [21] Della, C. N.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Adv. Synth. Catal. 2011, 353, 133.

    31. [31]

      [22] Qi, C. R.; Jiang, H. F. Green Chem. 2007, 9. 1284.

    32. [32]

      [23] Sasaki, Y.; Dixncuf, P. H. J. Org. Chem. 1987, 52, 4389.

    33. [33]

      [24] Bruncau, C.; Dixncuf, P. H.; Tetrahedron Lett. 1987, 28, 2005.

    34. [34]

      [25] Qi, C. R.; Huang, L. B.; Jiang, H. F. Synthesis 2010, 1433.

    35. [35]

      [26] Kim, H. S.; Kim, J. W.; Kwon, S. C.; Shim, S. C.; Kim, T. J. J. Organomet. Chem. 1997, 545~546, 337.

    36. [36]

      [27] Kim, T. J.; Kwon, K. H.; Kwon, S. C.; Baeg, J. O.; Shim, S. C.; Lee, D. H. J. Organomet. Chem. 1990, 389, 205.

    37. [37]

      [28] Song, Q. W.; Yu, B.; Li, X. D.; Ma, R.; Diao, Z. F.; Li, R. G.; Li, W.; He, L. N. Green Chem. 2014, 16, 1633.

    38. [38]

      [29] Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. ChemSusChem 2015, 8, 821.

    39. [39]

      [30] Jiang, H. F.; Zhao, J. W.; Wang, A. Z. Synthesis 2008, 763.

    40. [40]

      [31] Pinaka, A.; Vougioukalakis, G. C. Coord. Chem. Rev. 2015, 288, 69.

    41. [41]

      [32] (a) Li, Y. N.; Wang, J. N.; He, L.-N. Tetrahedron Lett. 2011, 52, 3485.

    42. [42]

      (b) Yang, Z.; Wang, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2015, 35, 207 (in Chinese). (杨振平, 王兵南, 许孝良, 王红, 李小年, 有机化学, 2015, 35, 207.)

    43. [43]

      [33] Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Green Chem. 2016, 18, 382.

    44. [44]

      [34] Gu, Y. L.; Shi, F.; Deng, Y. Q. J. Org. Chem. 2004, 69, 391.

  • 加载中
    1. [1]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    5. [5]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    6. [6]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    7. [7]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    8. [8]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    12. [12]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    18. [18]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(0)
  • Abstract views(916)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return