Citation: Li Xuedong, Lang Xiandong, Song Qingwen, Guo Yakun, He Liangnian. Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO2[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 744-751. doi: 10.6023/cjoc201512037 shu

Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO2

  • Corresponding author: He Liangnian, 
  • Received Date: 25 December 2015
    Available Online: 30 January 2016

    Fund Project: 国家自然科学基金(Nos.21472103,21121002) (Nos.21472103,21121002)教育部博士点基金(No.20130031110013) (No.20130031110013)国家基础科学人才培养基金(No.J1103306)资助项目. (No.J1103306)

  • β-Oxopropylcarbamates constitute an important kind of organic compounds, owing to the extensive applications in agrochemicals, pharmaceuticals, organic synthesis, and protection of amino group. In this article, an efficient and atom-economical Cu(I) catalyzed three-component reaction of propargylic alcohols, secondary amines and CO2 has been developed under atmospheric pressure, affording various β-oxopropylcarbamates in high yields with high selectivity by controlling the concentration of O2. This protocol avoids the use of high pressure of CO2 and provides an extremely simple way to access the synthetically useful β-oxopropylcarbamates.
  • 加载中
    1. [1]

      [1] (a) He, L.-N. CO2 Chemistry, Science Press, Beijing, 2013 (in Chinese). (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)

    2. [2]

      (b) Otto, A.; Grube, T.; Schiebahna, S.; Stolten, D. Energy Environ. Sci. 2015, 8, 3283.

    3. [3]

      [2] Li, J. H.; Jia, L. Q.; Jiang, H. F. Chin. J. Org. Chem. 2000, 20, 293 (in Chinese). (李金恒, 贾兰齐, 江焕峰, 有机化学, 2000, 20, 293.)

    4. [4]

      [3] (a) Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

    5. [5]

      (b) Gao, J.; Miao, C.; Wang, J.; He, L.-N. Petrochemical Technol. 2010, 39, 465 (in Chinese). (高健, 苗成霞, 汪靖伦, 何良年, 石油化工, 2010, 39, 465.)

    6. [6]

      (c) Ji, D. F.; Lu, X. B.; He, R.; Zhan, X. L.; Yang, Y. R. Chem. J. Chin. Univ. 2001, 22, 1720 (in Chinese). (季东锋, 吕小兵, 何仁, 詹晓力, 阳永荣, 高等学校化学学报, 2001, 22, 1720.)

    7. [7]

      [4] For trepresentative reviews and reports on carbon capture and utilization, see: (a) Li, Y. N.; Ma, R.; He, L.-N.; Diao, Z. F. Catal. Sci. Technol. 2014, 4, 1498.

    8. [8]

      (b) Li, Y. N.; He, L.-N. Chin. Sci.Bull. 2015, 60, 1465 (in Chinese). (李雨浓, 何良年, 科学通报, 2015, 60, 1465.)

    9. [9]

      (c) Yang, Z. Z.; Zhao, Y. N.; He, L.-N. RSC Adv. 2011, 1, 545.

    10. [10]

      (d) Yang, Z. Z.; He, L.-N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.

    11. [11]

      (e) Liu, A. H.; Ma, R.; Song, C.; Yang, Z. Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y. N.; Yu, B.; Song, Q. W. Angew. Chem., Int. Ed. 2012, 51, 11306.

    12. [12]

      (f) Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L.-N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem. 2014, 7, 1484.

    13. [13]

      [5] (a) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.

    14. [14]

      (b) He, M.; Sun, Y.; Han, B. Chin. Sci. Bull. 2015, 60, 1421 (in Chinese). (何鸣元, 孙予罕, 韩布兴, 科学通报, 2015, 60, 1421.)

    15. [15]

      [6] Wu, T. T.; Huang, J.; Arrington, N. D.; Dill, G. M. J. Agric. Food Chem. 1987, 35, 817.

    16. [16]

      [7] Vauthey, I.; Valot, F.; Gozzi, C.; Fache, F.; Lemaire, M. Tetrahedron Lett. 2000, 41, 6347.

    17. [17]

      [8] McGhee, W. D.; Pan, Y.; Riley, D. P. J. Chem. Soc., Chem. Commun. 1994, 6, 699.

    18. [18]

      [9] McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem. 1995, 60, 2820.

    19. [19]

      [10] Salvatore, R. N.; Shin, S.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2001, 66, 1035.

    20. [20]

      [11] Yoshida, M.; Hara, N.; Okuyama, S. Chem. Commun. 2000, 151.

    21. [21]

      [12] Srivastava, R.; Srinivas, D.; Ratnasamy, P. Appl. Catal. A: Gen. 2005, 289, 128.

    22. [22]

      [13] Kong, D. L.; He, L. N.; Wang, J. Q. Synth. Commun. 2011, 41, 3298.

    23. [23]

      [14] Ion, A.; Van Doorslaer, C.; Parvulescu, V.; Jacobs, P.; De Vos, D. Green Chem. 2008, 10, 111.

    24. [24]

      [15] Chaturvedi, D.; Kumar, A.; Ray, S. Tetrahedron Lett. 2003, 44, 7637.

    25. [25]

      [16] Abla, M.; Choi, J. C.; Sakakura, T. Chem. Commun. 2001, 2238.

    26. [26]

      [17] Mahe, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1989, 54, 1518.

    27. [27]

      [18] Selva, M.; Tundo, P.; Perosa, A. Tetrahedron Lett. 2002, 43, 1217.

    28. [28]

      [19] Dell'Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Chem. Rev. 2003, 103, 3857.

    29. [29]

      [20] Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.

    30. [30]

      [21] Della, C. N.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Adv. Synth. Catal. 2011, 353, 133.

    31. [31]

      [22] Qi, C. R.; Jiang, H. F. Green Chem. 2007, 9. 1284.

    32. [32]

      [23] Sasaki, Y.; Dixncuf, P. H. J. Org. Chem. 1987, 52, 4389.

    33. [33]

      [24] Bruncau, C.; Dixncuf, P. H.; Tetrahedron Lett. 1987, 28, 2005.

    34. [34]

      [25] Qi, C. R.; Huang, L. B.; Jiang, H. F. Synthesis 2010, 1433.

    35. [35]

      [26] Kim, H. S.; Kim, J. W.; Kwon, S. C.; Shim, S. C.; Kim, T. J. J. Organomet. Chem. 1997, 545~546, 337.

    36. [36]

      [27] Kim, T. J.; Kwon, K. H.; Kwon, S. C.; Baeg, J. O.; Shim, S. C.; Lee, D. H. J. Organomet. Chem. 1990, 389, 205.

    37. [37]

      [28] Song, Q. W.; Yu, B.; Li, X. D.; Ma, R.; Diao, Z. F.; Li, R. G.; Li, W.; He, L. N. Green Chem. 2014, 16, 1633.

    38. [38]

      [29] Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. ChemSusChem 2015, 8, 821.

    39. [39]

      [30] Jiang, H. F.; Zhao, J. W.; Wang, A. Z. Synthesis 2008, 763.

    40. [40]

      [31] Pinaka, A.; Vougioukalakis, G. C. Coord. Chem. Rev. 2015, 288, 69.

    41. [41]

      [32] (a) Li, Y. N.; Wang, J. N.; He, L.-N. Tetrahedron Lett. 2011, 52, 3485.

    42. [42]

      (b) Yang, Z.; Wang, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2015, 35, 207 (in Chinese). (杨振平, 王兵南, 许孝良, 王红, 李小年, 有机化学, 2015, 35, 207.)

    43. [43]

      [33] Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Green Chem. 2016, 18, 382.

    44. [44]

      [34] Gu, Y. L.; Shi, F.; Deng, Y. Q. J. Org. Chem. 2004, 69, 391.

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    18. [18]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return