Citation: Ge Xin, Chen Xinzhi, Qian Chao. Progress on the Lewis-Basic Organocatalytic Asymmetric Reduction of Imines[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1208-1217. doi: 10.6023/cjoc201512029 shu

Progress on the Lewis-Basic Organocatalytic Asymmetric Reduction of Imines

  • Corresponding author: Qian Chao, qianchao@zju.edu.cn
  • Received Date: 21 December 2015
    Revised Date: 26 January 2016

    Fund Project: Zhejiang Provincial Public Technology Research of China Nos.2014C31123,2015C31038and the Fundamental Research Funds for the Central Universities No.JUSRP115A05Project supported by the Natural Science Foundation of China Nos.21376213,21476194

Figures(9)

  • Recently, the asymmetric reduction of imines catalyzed by Lewis-basic organocatalyst has been received much attention as the cheap hydrogen source and the simple post treatment. Based on the different functional groups of organocatalysts, this paper introduced formamide, pyridine amide, sulfonamide, supported and other Lewis basic organocatalysts. The structural characteristics, catalytic activity and mechanism of the Lewis-basic organocatalysts were summarized.
  • 加载中
    1. [1]

    2. [2]

      Blaser, H. U. Chem Commun. 2003, 293.

    3. [3]

      Langlois, N.; Dang, T.; Kagan, H. B. Tetrahedron Lett. 1973, 4865.

    4. [4]

      Bakos, J.; Orosz, A.; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou, D. J. Chem.Soc.-Chem. Commun. 1991, 1684.

    5. [5]

       

    6. [6]

      Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1992, 114, 7562. 

    7. [7]

      Schnider, P.; Koch, G.; Pretot, R.; Wang, G. Z.; Bohnen, F. M.; Kruger, C.; Pfaltz, A. Chem-Eur J. 1997, 3, 887. 

    8. [8]

      Xiao, D. M.; Zhang, X. M. Angew. Chem., Int. Ed. 2001, 40, 3425. 

    9. [9]

      Wang, C.; Villa-Marcos, B.; Xiao, J. L. Chem. Commun. 2011, 47, 9773. 

    10. [10]

      Blaser, H. U.; Buser, H. P.; Coers, K.; Hanreich, R.; Jalett, H. P.; Jelsch, E.; Pugin, B.; Schneider, H. D.; Spindler, F.; Wegmann, A. Chimia 1999, 53, 275.

    11. [11]

      Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103. 

    12. [12]

      List, B. J. Am. Chem. Soc. 2000, 122, 9336. 

    13. [13]

      List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395. 

    14. [14]

      List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573.

    15. [15]

      Mitsumori, S.; Zhang, H.; Cheong, P. H. Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 1040. 

    16. [16]

      List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423. 

    17. [17]

      Iwasaki, F.; Onomura, O.; Mishima, K.; Kanematsu, T.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2001, 42, 2525.

    18. [18]

      Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int Ed. 2005, 44, 7424. 

    19. [19]

      Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 6751. 

    20. [20]

      Rueping, M.; Antonchick, A. R.; Theissmann, T. Angew Chem., Int. Ed. 2006, 45, 3683. 

    21. [21]

      Rueping, M.; Theissmann, T.; Antonchick, A. P. Synlett 2006, 1071.

    22. [22]

      Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org. Lett. 2004, 6, 2253.

    23. [23]

      Wang, Z. Y.; Wei, S. Y.; Wang, C.; Sun, J. Tetrahedron: Asymmetry 2007, 18, 705. 

    24. [24]

      Wang, Z. Y.; Wang, C.; Zhou, L.; Sun, J. Org. Biomol. Chem. 2013, 11, 787. 

    25. [25]

      Wang, Z. Y.; Cheng, M.; Wu, P. C.; Wei, S. Y.; Sun, J. Org. Lett. 2006, 8, 3045.

    26. [26]

      Wang, Z. Y.; Ye, X. X.; Wei, S. Y.; Wu, P. C.; Zhang, A. J.; Sun, J. Org. Lett. 2006, 8, 999.

    27. [27]

      Zhou, L.; Wang, Z. Y.; Wei, S. Y.; Sun, J. Chem. Commun. 2007, 2977.

    28. [28]

      Zhang, Z. G.; Rooshenas, P.; Hausmann, H.; Schreiner, P. R. Synthesis-Stuttgart 2009, 1531.

    29. [29]

      Kanemitsu, T.; Umehara, A.; Haneji, R.; Nagata, K.; Itoh, T. Tetrahedron 2012, 68, 3893.

    30. [30]

      Malkov, A. V.; Stoncius, S.; MacDougall, K. N.; Mariani, A.; McGeoch, G. D.; Kocovsky, P. Tetrahedron 2006, 62, 264. 

    31. [31]

      Malkov, A. V.; Vrankova, K.; Sigerson, R. C.; Stoncius, S.; Kocovsky, P. Tetrahedron 2009, 65, 9481. 

    32. [32]

      Malkov, A. V.; Vrankova, K.; Stoncius, S.; Kocovsky, P. J. Org. Chem. 2009, 74, 5839. 

    33. [33]

      Malkov, A. V.; Stoncius, S.; Kocovsky, P. Angew. Chem., Int Ed. 2007, 46, 3722. 

    34. [34]

      Malkov, A. V.; Stoncius, S.; Vrankova, K.; Arndt, M.; Kocovsky, P. Chem. Eur. J. 2008, 14, 8082. 

    35. [35]

      Xiao, Y.-C.; Wang, C.; Yao, Y.; Sun, J.; Chen, Y.-C. Angew. Chem., Int. Ed. 2011, 50, 10661.

    36. [36]

      Onomura, O.; Kouchi, Y.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 3751.

    37. [37]

      Zheng, H.-J.; Chen, W.-B.; Wu, Z.-J.; Deng, J.-G.; Lin, W.-Q.; Yuan, W.-C.; Zhang, X.-M. Chem-Eur J. 2008, 14, 9864.

    38. [38]

      Xue, Z.-Y.; Jiang, Y.; Yuan, W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2010, 616.

    39. [39]

      Chen, X.; Zheng, Y.; Shu, C.; Yuan, W.; Liu, B.; Zhang, X. J. Org. Chem. 2011, 76, 9109. 

    40. [40]

      Gautier, F. M.; Jones, S.; Martin, S. J. Org. Biomol. Chem. 2009, 7, 229. 

    41. [41]

      Jones, S.; Li, X. F. Tetrahedron 2012, 68, 5522. 

    42. [42]

      Zheng, H.; Deng, J.; Lin, W.; Zhang, X. Tetrahedron Lett. 2007, 48, 7934.

    43. [43]

      Xue, Z.-Y.; Jiang, Y.; Peng, X.-Z.; Yuan, W.-C.; Zhang, X.-M. Adv. Synth. Catal. 2010, 352, 2132.

    44. [44]

      Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 7304. 

    45. [45]

      Guizzetti, S.; Benaglia, M.; Bonsignore, M.; Raimondi, L. Org. Biomol. Chem. 2011, 9, 739. 

    46. [46]

      Pei, D.; Wang, Z.; Wei, S.; Zhang, Y.; Sun, J. Org. Lett. 2006, 8, 5913.

    47. [47]

      Pei, D.; Zhang, Y.; Wei, S. Y.; Wang, M.; Sun, J. Adv. Synth. Catal. 2008, 350, 619. 

    48. [48]

      Wang, C.; Wu, X.; Zhou, L.; Sun, J. Chem. Eur. J. 2008, 14, 8789. 

    49. [49]

      Wu, X. J.; Li, Y.; Wang, C.; Zhou, L.; Lu, X. X.; Sun, J. A. Chem. Eur. J. 2011, 17, 2846. 

    50. [50]

      Malkov, A. V.; Liddon, A.; Ramirez-Lopez, P.; Bendova, L.; Haigh, D.; Kocovsky, P. Angew Chem., Int. Edit .2006, 45, 1432. 

    51. [51]

       

    52. [52]

      Ge, X.; Qian, C.; Chen, Y. B.; Chen, X. Z. Tetrahedron: Asymmetry 2014, 25, 596. 

    53. [53]

      Malkov, A. V.; Figlus, M.; Stoncius, S.; Kocovsky, P. J. Org. Chem. 2007, 72, 1315. 

    54. [54]

      Malkov, A. V.; Figlus, M.; Kocovsky, P. J. Org. Chem. 2008, 73, 3985. 

    55. [55]

      Malkov, A. V.; Figlus, M.; Cooke, G.; Caldwell, S. T.; Rabani, G.; Prestly, M. R.; Kocovsky, P. Org. Biomol. Chem. 2009, 7, 1878. 

    56. [56]

      Malkov, A. V.; Figlus, M.; Prestly, M. R.; Rabani, G.; Cooke, G.; Kocovsky, P. Chem. Eur. J. 2009, 15, 9651. 

    57. [57]

      Ge, X.; Qian, C.; Chen, X. Z. Tetrahedron: Asymmetry 2014, 25, 1450. 

    58. [58]

    59. [59]

      Ge, X.; Qian, C.; Ye, X. M.; Chen, X. Z. RSC Adv. 2015, 5, 65402. 

  • 加载中
    1. [1]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    9. [9]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

Metrics
  • PDF Downloads(0)
  • Abstract views(1703)
  • HTML views(430)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return