Citation: Zhang Junlin, Xiao Chuan, Zhai Lianjie, Wang Xijie, Bi Fuqiang, Wang Bozhou. Synthesis and Properties of the Fused Aza-polynitrocyclic Compounds[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1197-1207. doi: 10.6023/cjoc201512024 shu

Synthesis and Properties of the Fused Aza-polynitrocyclic Compounds

  • Corresponding author: Bi Fuqiang, bifuqiang@gmail.com Wang Bozhou, wbz600@163.com
  • Received Date: 19 December 2015
    Revised Date: 7 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21503162

Figures(18)

  • Fused aza-polycyclic structures play an important role in the synthesis of energetic compounds and the presence of NNO2 groups renders them a rich source of energy. Currently, fused aza-polynitrocyclic compounds have gained considerable prominence as novel energetic compounds. This review focuses on the synthesis of various ring skeletons of the aza-bicyclic, aza-polycyclic and aza-propellane-derivatized energetic compounds as well as the studies of N-nitration, physicochemistry and detonation properties. The synthesis of pentaaza[3.3.3]propellane and hexaaza[3.3.3]propellane is highlighted and N-nitration explorations of these high-strained unstable skeletons are discussed in details.
  • 加载中
    1. [1]

    2. [2]

      Cooper, P. W. Explosives Engineering, Wiley-VCH, New York, 1996.

    3. [3]

      Zukas, J. A.; Walters, W. P. Explosive Effects and Applications, Springer, New York, 1998.

    4. [4]

      Agrarval, J. P. Propellants, Explos. Pyrotech. 2005, 30, 316. 

    5. [5]

      Jadhav, H. S.; Talawar, M. B.; Sivabalan, R.; Dhavale, D. D.; Asthana, S. N.; Krishnamurthy, V. N. J. Hazard. Mater. 2007, 143, 192. 

    6. [6]

      Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187. 

    7. [7]

      Olall, G. A.; Squire, D. R. Chemistry of Energetic Materials, Academic Press Inc, San Diego, 1991.

    8. [8]

      Meyer, R.; Kohler, J. Explosives, VCH Publishers, Weinheim, 1993.

    9. [9]

      Vroom, A. H.; Winkler, C. A. Can. J. Res. 1950, 28B, 701.

    10. [10]

      Maycock, J. N.; Verneker, V. R.; Lochte, W. Phys. Status Solidi 1969, 35, 849. 

    11. [11]

      Nielsen, A. T.; Nissan, R. A.; Vanderah, D. J. Org. Chem. 1990, 55, 1459. 

    12. [12]

      Nielsen, A. T.; Nissan, R. A.; Chafin, A. P.; Gilardi, R. D.; George, C. F. J. Org. Chem. 1992, 57, 6756. 

    13. [13]

      Bayat, Y.; Hajimirsadeghi, S. S.; Pourmortazavi, S. P. Org. Process Res. Dev. 2011, 15, 810. 

    14. [14]

      Koppes, W. M.; Chaykovsky, M. J. Org. Chem. 1987, 52, 1113. 

    15. [15]

      Qiu, L.; Xiao, H. M.; Gong, X. D.; Ju, X. H.; Zhu, W. H. J. Hazard. Mater. 2007, 141, 280. 

    16. [16]

       

    17. [17]

    18. [18]

      Boys, S. F.; Cook, G. B.; Reeves, C. M.; Shavitt, I. Nature 1956, 178, 1207.

    19. [19]

      Oharagheizi, F.; Sattari, M.; Tirandazi, B. Ind. Eng. Chem. Res. 2011, 50, 2482. 

    20. [20]

      Keshavarz, M. H. J. Hazard. Mater. 2010, 177, 648. 

    21. [21]

      Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23. 

    22. [22]

    23. [23]

      Qiu, L.; Xiao, H. M. J. Hazard. Mater. 2009, 164, 329. 

    24. [24]

    25. [25]

      Ramakrishnan, V. T.; Vedachalam, M.; Boyer, J. M. Heterocycles 1990, 3, 479.

    26. [26]

      Koch, E. C. Propellants, Explos. Pyrotech. 2010, 35, 1.

    27. [27]

      Nielsen, A. T. US 5693794, 1997 [Chem. Abstr. 1997, 128, 36971].

    28. [28]

      Simpson, R. L.; Urtiew, P. A.; Ornellas, D. L.; Moody, G. L.; Scribner, K. J.; Hoffman, D. M. Propellants, Explos. Pyrotech. 1997, 22, 249. 

    29. [29]

      Dippold, A. A.; Klapoötke, T. M. J. Am. Chem. Soc. 2013, 135, 9931. 

    30. [30]

      Haixiang Gao, H. X.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377. 

    31. [31]

      Oxley, J. C.; Smith, J. L. Propellants, Explos. Pyrotech. 2013, 38, 335. 

    32. [32]

    33. [33]

      Nielsen, A. T.; Nissan, R. A.; Chafin, A. P.; Gilardi, R. D.; George, C. F. J. Org. Chem. 1992, 57, 6756. 

    34. [34]

      William, M. K.; Michael, C.; Horst, G. A. J. Org. Chem. 1987, 52, 1113. 

    35. [35]

      Boileau, J.; Emeury, J. M. L.; Kehren, J. P. US 4487938, 1984 [Chem. Abstr. 1985, 102, 169227].

    36. [36]

      Willer, R. L. Chin. J. Explos. Propellants 1983, 8, 65. 

    37. [37]

      Mitchell, A. R.; Pagoria, P. F.; Coon, C. L.; Jessop, E. S.; Poco, J. F.; Tarver, C. M.; Breithaupt, R. D.; Moody, G. L. Propellants, Explos., Pyrotech. 1994, 19, 232. 

    38. [38]

      Pagoria, P. F.; Mitehell, A. R.; Sehmidt, R. D. ACS. Symp. Ser. 1996, 151.

    39. [39]

      Willer, R. L.; Moore, D. W. J. Org. Chem. 1985, 50, 5123. 

    40. [40]

    41. [41]

      Sikder, A. K.; Bhokare, G. M.; Sarwade, D. B.; Agrawal, J. P. Propellants, Explos. Pyrotech. 2001, 26, 63. 

    42. [42]

    43. [43]

      Pagoria, P. F.; Mitchell, A. R.; Jessop, J. S. Propellants, Explos. Pyrotech. 1996, 21, 14. 

    44. [44]

      Sikder, A. K.; Bhokare, G. M.; Sarwade, D. B.; Agrawal, J. P. Propellants, Explos. Pyrotech. 2001, 26, 63. 

    45. [45]

      Pagoria, P. F.; Alexander, R.; Mitchell, E. S. J. Propellants, Explos. Pyrotech. 1996, 21, 14. 

    46. [46]

      Cao, X. F.; Li, B. D.; Wang, M. Chin. Chem. Lett. 2014, 25, 423.

    47. [47]

      QIU, L.; GONG, X. D.; Xiao, H. M. Chin. J. Chem. 2008, 26, 2165. 

    48. [48]

      Lobanova, A. A.; Sataev, R. R.; Popov, N. I. Russ. J. Org. Chem. 2000, 36, 164.

    49. [49]

      Zheng, Y. Y.; Zhou, J. Z.; Zhang, M. N. Acta Armamentarii 1988, 1, 59.

    50. [50]

      Levine, M. N.; Raines, R. T. Chem. Sci. 2012, 3, 2412. 

    51. [51]

      Vedachalam, M.; Ramakrishnan, V. T.; Boyer, J. H.; Dagley, I. J.; Nelson, A.; Adolph, H. G.; Gilardi, R.; George, C.; Flippen, J. L. J. Org. Chem. 1991, 56, 3413. 

    52. [52]

    53. [53]

      Willer, R. L. J. Org. Chem. 1985, 50, 5123. 

    54. [54]

      Fischer, J. W.; Hollins, R. A.; Ma, C. K.; Nissan, R. A.; Chapman, R. D. J. Org. Chem. 1996, 61, 9340. 

    55. [55]

      Cui, K. J.; Xu, G. R.; Xu, Z. B.; Wang, P.; Xue, M.; Meng, Z. H.; Li, J. R.; Wang, B. Z.; Ge, Z. X.; Qin, G. M. Propellants, Explos. Pyrotech. 2014, 39, 662. 

    56. [56]

      He, P, Zhang, J. G.; Wang, K.; Yin, X.; Zhang, T. L. J. Org. Chem. 2015, 80, 5643. 

    57. [57]

      Shin, M.; Kim, M. H.; Ha, T; Jeon, J.; Chung, K.; Kim, J. S.; Kim, Y. G. Tetrahedron 2014, 70, 1617. 

    58. [58]

      Hu, X. E. Tetrahedron 2004, 60, 2701. 

    59. [59]

      Wiberg, K. B.; Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239. 

    60. [60]

      Wiberg, K. B.; Pratt, W. E.; Bailey, W. F. J. Am. Chem. Soc. 1977, 99, 2297. 

    61. [61]

      Eaton, P. E.; Temme, G. H. J. Am. Chem. Soc. 1977, 95, 7508.

    62. [62]

      Weber, R. W.; Cook, J. M. Can. J. Chem. 1978, 56, 189. 

    63. [63]

    64. [64]

      Wiberg, K. B. Angew. Chem., Int. Ed. 1986, 25, 312. 

    65. [65]

      Altman, J.; Babad, E.; Itzchaki, J.; Ginsburg, D. Tetrahedron 1966, (Suppl. 8), Part II, 279.

    66. [66]

      Weinberga, O.; Knowlesb, P.; Cinsburga, D. Helv. Chim. Acta 1985, 68, 610. 

    67. [67]

      Burnett, C. A.; Lajona, J.; Wu, A. X.; Shaw, J. A.; Daniel, C.; Fettinger, J. C.; Day, A. I.; Isaacs, L. Tetrahedron 2003, 59, 1961. 

    68. [68]

      Kim, Y. G.; Kim, J. S.; Chung, K. H.; Shin, M. Y.; Kim, S. H.; Ha, T. H.; Lee, H. R.; Kim, M. H. US 8609861, 2013 [Chem. Abstr. 2013, 158, 620867].

    69. [69]

      Shin, M.; Kim, M. H.; Ha, T. H.; Jeon, J.; Chung, K. H.; Kim, J. S.; Kim, Y. G. Tetrahedron 2014, 70, 1617. 

    70. [70]

      Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration. Methods and Mechanisms, VCH Publishers, Weinheim, 1989.

    71. [71]

      Xiao, H. M.; Tang, Z. H.; Chen, L.; Deng, Y. Acta Phys. Chim. Sin. 1990, 6, 499.

    72. [72]

      Zhang, Q. H.; Zhang, J. H.; Qi, X. J.; Shreeve, J. M. J. Phys. Chem. A 2014, 118, 10857. 

    73. [73]

      Mohammad, H. K. J. Hazard. Mater. 2007, 148, 648. 

  • 加载中
    1. [1]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    8. [8]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(1662)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return