Citation: Wang Chao, Deng Nan, Wang Lingling, Xu Dingjian, Yao Xiaoquan. Cu-Ag Bimetallic Nanoparticles Catalyzed Addition of Terminal Alkynes to Aldehydes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 1034-1043. doi: 10.6023/cjoc201512018 shu

Cu-Ag Bimetallic Nanoparticles Catalyzed Addition of Terminal Alkynes to Aldehydes

  • Corresponding author: Yao Xiaoquan, yaoxq@nuaa.edu.cn
  • Received Date: 13 December 2015
    Revised Date: 15 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No.21172107

Figures(2)

  • A copper-silver nanoparticles-catalyzed addition of terminal alkynes to aldehydes was developed for the synthesis of propargyl alcohols. With the promotion of bipyridine ligand, the bimetallic catalyst showed highly efficient to the reaction under neat condition, and good to excellent yields were achieved for various propargylic alcohols. In this catalytic reaction, a remarkable bimetallic synergistic effect was observed, in which Ag NPs worked as the co-catalyst and improved the catalytic activity of Cu NPs significantly. The nanoparticle catalyst could be recovered and reused effectively, and no obvious reduction on catalytic activity was observed after four recycles. Furthermore, a gram-scale reaction was also carried out successfully.
  • 加载中
    1. [1]

       

    2. [2]

      For recent reviews, see: (a) Gao, G.; Moore, D.; Xie, R. G.; Pu, L. Org. Lett. 2002, 4, 4143. (b) Pu, L.; Yu, H. B. Chem. Rev. 2001, 101, 757. (c) Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373. (d) Srihari, P.; Singh, V. K.; Bhunia, D. C.; Yadav, J. S. Tertrahedron Lett. 2008, 49, 7132. (e) Zheng, B.; Li, Z. Y.; Liu, F. P.; Wu, Y. H.; Shen, J.-J.; Bian, Q. H.; Hou, S. C.; Wang. M. Molecules 2013, 18, 15422.

    3. [3]

      He, Q. W.; Ma. S. M. Chin. J. Org. Chem. 2002, 22, 375.

    4. [4]

      Usanov, D. L.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 1286. (b) Li, X. S.; Lu, G.; Kwok, W. H. J. Am. Chem. Soc. 2002, 124, 12636. (c) Xu, M. H.; Pu, L. Org. Lett. 2002, 4, 4555. (d) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855. (e) Li, Z. B.; Pu, L. Org. Lett. 2004, 6, 1065. (f) Xu, Z. Q.; Hen, C.; Xu, J. K.; Miao, M. B.; Yan, W. J.; Wang, R. Org. Lett. 2004, 6, 1193. (g) Liu, L.; Wang, R.; Chen, C.; Xu, Z. Q.; Zhou, Y. F.; Ni, M.; Kang, Y. F.; Cai, H. Q.; Gong, M. Z. J. Org. Chem. 2004, 4095. 

    5. [5]

      Some reviews and examples, see: (a) Trost, B. M.; Krische, M. J. J. Am. Chem. Soc. 1999, 121, 6131. (b) Tzalis, D.; Knochel, P. Angew. Chem., In. Ed. 1999, 38, 1463. (c) Friedrich, K. In the Chemistry of Triple-boned Functional Groups, Supplement C, Eds.: Patai, S.; Rappoport, Z., John Wiley & Sons: New York, 1983, Chapter 28. (d) Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes, Elsevier, Amsterdam, 1981. (e) Liu, J.; An, Y.; Wang, Y. H.; Jiang, H. Y.; Zhang, Y. X.; Chen, Z. L. Chem. Eur. J. 2008, 14, 9131. 

    6. [6]

      Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. J. Am. Chem. Soc. 2000, 8, 1806. (b) Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605. (c) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687. (d) Li, M.; Zhu, X. Z.; Yuan, K.; Cao, B. X.; Hou, X. L. Tetrahedron: Asymmentry. 2004, 15, 219. (e) Xu, Z. Q.; Chen, C.; Xu, J. K.; Miao, M. B.; Yan, W. J.; Wang, R. Org. Lett. 2004, 6, 1193.

    7. [7]

      Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7, 1363. (b) Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13760.

    8. [8]

      Wei, C. M.; Li, C. J. Green Chem. 2002, 4, 39. 

    9. [9]

      Dhondi, P. K.; Chisholm, J. D. Org. Lett. 2006, 8, 67. 

    10. [10]

      Ito, J.; Asai, R.; Nishiyama, H. Org. Lett. 2010, 12, 3860.

    11. [11]

      Asano, Y.; Ito, H.; Hara, K.; Aswamur, M. Organometallics 2008, 27, 5984. (b) Asano, Y.; Hara, K.; Ito, H.; Aswamur, M. Org. Lett., 2007, 9, 3901.

    12. [12]

      Yao, X. Q.; Li, C. J. Org. Lett. 2005, 7, 4395. (b) Yu, M.; Skouta, R.; Zhou, L.; Jiang, H.; Yao, X.; Li, C. J. J. Org. Chem. 2009, 74, 3378. 

    13. [13]

      Yao, X. Q.; Li, C. J. Org. Lett. 2006, 8, 1953. 

    14. [14]

      For selected reviews, see: (a) Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 1450. (b) Shaikhutdinov, S.; Freund, H.-J. Acc. Chem. Res. 2013, 46, 1673. (c) Hervés, P.; Pérez Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev. 2012, 41, 5577. (d) Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262. (e) Shiju, N. R.; Guliants, V. V. Appl. Catal. A: Gen. 2009, 356, 1. (f) Somorjai, G. A.; Park, J. Y. Angew. Chem., Int. Ed. 2008, 47, 9212. (g) Gu, Y.; Li, G. Adv. Synth. Catal. 2009, 351, 817. 

    15. [15]

    16. [16]

       

    17. [17]

       

    18. [18]

      Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2002, 124, 5638. (b) Wei, C. M.; Mague, J. T.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5749. 

    19. [19]

      Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. J. Am. Chem. Soc. 2014, 136, 924. (b) Qi, X.; Li, Y.; Zhang, G.; Li, Y.; Lei, A.; Liu,; Lan, Y. Dalton Trans. 2015, 44, 11165. (c) Yuan, J.; Wang, J.; Zhang, G.; Liu, C.; Qi, X.; Lan, Y.; Miller, J. T.; Kropf, J.; Bunel, E. E.; Lei, A. Chem. Commun. 2015, 51, 576. (d) Tang, S.; Liu, Y.; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 15850. 

    20. [20]

      Singh, M.; Sinha, I.; Singh, A. K.; Mandal, R. K. Colloid Surf., A 2005, 384, 668.

    21. [21]

      Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Mater. Res. Bull. 2011, 46, 384. 

    22. [22]

      Tan, K. S.; Cheong, K. Y.; J. Nanopart. Res. 2013, 15, 1537. 

    23. [23]

      Li, Y. S.; Lu, Y. C.; Chou, K. S.; Liu, F. J. Mater. Res. Bull. 2010, 45, 1837. 

    24. [24]

      Grouchko, M.; Kamyshny, A.; Magdassi, S. J. Mater. Chem, 2009, 19, 3057. 

    25. [25]

      Butovsky, E.; Perelshtein, I.; Gedanken, A. J. Mater. Chem, 2012, 22, 15025. 

    26. [26]

      Kwok, H. N.; Penner, R. M. J. Electroanal. Chem. 2002, 522, 86. 

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

Metrics
  • PDF Downloads(0)
  • Abstract views(839)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return