Citation: Wang Jian, Cui Dongmei. Research Progress in Non-noble Metals Catalyzed Hydroamination of Alkyenes and Alkynes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1163-1183. doi: 10.6023/cjoc201512010 shu

Research Progress in Non-noble Metals Catalyzed Hydroamination of Alkyenes and Alkynes

  • Corresponding author: Cui Dongmei, cuidongmei@zjut.edu.cn
  • Received Date: 8 December 2015
    Revised Date: 7 January 2016

Figures(31)

  • Organic compounds that contain nitrogen are very important intermediates in pharmaceutical and chemical industry. Hydroamination is the reaction that can form C—N bond with high atom economy. The research progress in non-noble metals catalyzed hydroamination of alkenes and alkynes from the perspective of reaction mechanism is categorized and summarized.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Barluenga, J.; Fernández, M. A.; Aznar, F.; Valdés, C. Chem. Eur. J. 2004, 10, 494. (b) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109. (c) Martínez, C.; Muñiz, K. Angew. Chem., Int. Ed. 2015, 54, 8287. (d) Venkat Reddy, C. R.; Urgaonkar, S.; Verkade, J. G. Org. Lett. 2005, 7, 4427. (e) Weng, B.; Li, J. H. Appl. Organomet. Chem. 2009, 23, 375. 

    5. [5]

      Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin Trans. 1 1988, 2185. (b) Hansson, C.; Wickberg, B. J. Org. Chem. 1973, 38, 3074. (c) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 397.

    6. [6]

      Flitsch, W.; Schindler, S. R. Synthesis 1975, 1975, 685. (b) Murphy, P. J.; Brennan, J. Chem. Soc. Rev. 1988, 17, 1. 

    7. [7]

    8. [8]

      Baron, M.; Metay, E.; Lemaire, M.; Popowycz, F. Green Chem. 2013, 15, 1006. (b) Cantillo, D.; Moghaddam, M. M.; Kappe, C. O. J. Org. Chem. 2013, 78, 4530. (c) Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. J. Org. Chem. 2015, 80, 7281. (d) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2015, 137, 8888. (e) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941.

    9. [9]

      Borah, A. J.; Phukan, P. Tetrahedron Lett. 2012, 53, 3035. (b) Liu, P.; Wang, Z.; Hu, X. Eur. J. Org. Chem. 2012, 2012, 1994. (c) Moriyama, K.; Ishida, K.; Togo, H. Org. Lett. 2012, 14, 946. (d) Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 11399. (e) Zagulyaeva, A. A.; Banek, C. T.; Yusubov, M. S.; Zhdankin, V. V. Org. Lett. 2010, 12, 4644. 

    10. [10]

    11. [11]

      Imase, H.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 3563. (b) Lefranc, J.; Tetlow, D. J.; Donnard, M.; Minassi, A.; Gálvez, E.; Clayden, J. Org. Lett. 2011, 13, 296. (c) Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Org. Lett. 2007, 9, 4223.

    12. [12]

      McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323. 

    13. [13]

      Knölker, H.-J.; Agarwal, S. Tetrahedron Lett. 2005, 46, 1173.

    14. [14]

      Chernyak, N.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2743. 

    15. [15]

      Trinh, T. T. H.; Nguyen, K. H.; de Aguiar Amaral, P.; Gouault, N. Beilstein J. Org. Chem. 2013, 9, 2042.

    16. [16]

      Bates, R. W.; Lu, Y. J. Org. Chem. 2009, 74, 9460. 

    17. [17]

      Bates, R. W.; Dewey, M. R. Org. Lett. 2009, 11, 3706. 

    18. [18]

      Wang, C.; Sperry, J. Org. Lett. 2011, 13, 6444.

    19. [19]

      Toske, S. G.; Jensen, P. R.; Kauffman, C. A.; Fenical, W. Tetrahedron 1998, 54, 13459. 

    20. [20]

      Takabe, K.; Katagiri, T.; Tanaka, J.; Fujita, T.; Watanabe, S.; Suga, K. Org. Synth. 1989, 67, 44.

    21. [21]

    22. [22]

      Kozlov, N.; Dinaburskaya, B.; Rubina, T. J. Gen. Chem. USSR 1936, 1341. (b) Loritsch, J. A.; Vogt, R. R. J. Am. Chem. Soc. 1939, 61, 1462.

    23. [23]

      Gasc, M. B.; Lattes, A.; Perie, J. J. Tetrahedron 1983, 39, 703. (b) Larock, R. C. Angew. Chem., Int. Ed. 1978, 17, 27. (c) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239. (d) Stipa, P.; Finet, J. P.; Le Moigne, F.; Tordo, P. J. Org. Chem. 1993, 58, 4465. (e) Tokuda, M.; Yamada, Y.; Suginome, H. Chem. Lett. 1988, 17, 2. 

    24. [24]

      Benson, S. W. In Thermodynamical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., John Wiley and Sons, New York, 1976. (b) Brunet, J.-J.; Neibecker, D.; Niedercorn, F. J. Mol. Catal. 1989, 49, 235. (c) Johns, A. M.; Sakai, N.; Ridder, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9306. (d) Roundhill, D. M. Chem. Rev. 1992, 92, 1. (e) Steinborn, D.; Taube, R. Z. Chem. 1986, 26, 349.

    25. [25]

      Taube, R. In Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, Eds.: Cornils, B.; Herrmann, W. A., VCH, Weinheim, 1996. (b) Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2002, 124, 14542.

    26. [26]

      Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (b) Senn, H. M.; Blöchl, P. E.; Togni, A. J. Am. Chem. Soc. 2000, 122, 4098.

    27. [27]

      Howk, B. W.; Little, E. L.; Scott, S. L.; Whitman, G. M. J. Am. Chem. Soc. 1954, 76, 1899. 

    28. [28]

      Stroh, R.; Ebersberger, J.; Haberland, H.; Hahn, W. Angew. Chem. 1957, 69, 124. (b) Wollensak, J.; Closson, R. D. Org. Synth. 1963, 43, 45.

    29. [29]

      Closson, R. D.; Napolitano, J. P.; Ecke, G. G.; Kolka, A. J. J. Org. Chem. 1957, 22, 646. 

    30. [30]

      Steinborn, D.; Thies, B.; Wagner, I.; Taube, R. Z. Chem. 1989, 29, 333.

    31. [31]

      Pez, G. P.; Galle, J. E. Pure Appl. Chem. 1985, 57, 1917.

    32. [32]

      Narita, T.; Imai, N.; Tsuruta, T. Bull. Chem. Soc. Jpn. 1973, 46, 1242. 

    33. [33]

      Imai, N.; Narita, T.; Tsuruta, T. Tetrahedron Lett. 1971, 12, 3517. 

    34. [34]

      Narita, T.; Yamaguchi, T.; Tsuruta, T. Bull. Chem. Soc. Jpn. 1973, 46, 3825. 

    35. [35]

      Kouklovsky, C.; Pouilhès, A.; Baltaze, J.-P. Synlett 2013, 24, 1805.

    36. [36]

      Zhang, W.; Werness, J. B.; Tang, W. Org. Lett. 2008, 10, 2023.

    37. [37]

      Rousseau, G.; Lebeuf, R.; Schenk, K.; Castet, F.; Robert, F.; Landais, Y. Chem. Eur. J. 2014, 20, 14771. 

    38. [38]

      Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275. (b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. 

    39. [39]

      Buch, F.; Brettar, J.; Harder, S. Angew. Chem., Int. Ed. 2006, 45, 2741. (b) Harder, S. Angew. Chem., Int. Ed. 2004, 43, 2714. 

    40. [40]

      Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Angew. Chem., Int. Ed. 2012, 51, 4943. 

    41. [41]

      Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Chem. Eur. J. 2013, 19, 13445. 

    42. [42]

      Brinkmann, C.; Barrett, A. G.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2012, 134, 2193. 

    43. [43]

      Reid, S.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. Org. Lett. 2014, 16, 6016. 

    44. [44]

      Glock, C.; Gorls, H.; Westerhausen, M. Chem. Commun. 2012, 48, 7094.

    45. [45]

      Younis, F. M.; Krieck, S.; Görls, H.; Westerhausen, M. Organometallics 2015, 34, 3577.

    46. [46]

      Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042. 

    47. [47]

      Crimmin, M. R.; Arrowsmith, M.; Barrett, A. G. M.; Casely, I. J.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670. 

    48. [48]

      Datta, S.; Gamer, M. T.; Roesky, P. W. Organometallics 2008, 27, 1207. (b) Datta, S.; Roesky, P. W.; Blechert, S. Organometallics 2007, 26, 4392. 

    49. [49]

      Barrett, A. G. M.; Brinkmann, C.; Crimmin, M. R.; Hill, M. S.; Hunt, P.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 12906. 

    50. [50]

      Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Chem. Eur. J. 2013, 19, 2784. 

    51. [51]

      Romero, N.; Rosca, S. C.; Sarazin, Y.; Carpentier, J. F.; Vendier, L.; Mallet-Ladeira, S.; Dinoi, C.; Etienne, M. Chem. Eur. J. 2015, 21, 4115. 

    52. [52]

      Buch, F.; Harder, S. Z. Naturforsch. B 2008, 63, 4115.

    53. [53]

      Wixey, J. S.; Ward, B. D. Chem. Commun. 2011, 47, 5449. 

    54. [54]

      Nixon, T. D.; Ward, B. D. Chem. Commun. 2012, 48, 11790. 

    55. [55]

      Zhang, X.; Emge, T. J.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2012, 51, 394. 

    56. [56]

      Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871. (b) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. Organometallics 1999, 18, 1949. 

    57. [57]

       

    58. [58]

    59. [59]

      Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584. 

    60. [60]

      Kissel, A. A.; Mahrova, T. V.; Lyubov, D. M.; Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A.; Del Rosal, I.; Maron, L. Dalton Trans. 2015, 44, 12137.

    61. [61]

      Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. Chem. Eur. J. 2003, 9, 4796. (b) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748. (c) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23, 2601. 

    62. [62]

      Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108. (b) Gagne, M. R.; Nolan, S. P.; Marks, T. J. Organometallics 1990, 9, 1716. 

    63. [63]

      Li, Y.; Fu, P.-F.; Marks, T. J. Organometallics 1994, 13, 439. (b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295. 

    64. [64]

      Inagaki, S.; Ikeda, H. Tetrahedron Lett. 2015, 56, 5587. 

    65. [65]

      Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 707. (b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757. 

    66. [66]

      Bürgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998, 17, 1452. 

    67. [67]

      Bürgstein, M. R.; Berberich, H.; Roesky, P. W. Chem. Eur. J. 2001, 7, 3078. 

    68. [68]

      Bambirra, S.; Tsurugi, H.; van Leusen, D.; Hessen, B. Dalton Trans. 2006, 1157.

    69. [69]

      Bambirra, S.; van Leusen, D.; Meetsma, A.; Hessen, B.; H. Teuben, J. Chem. Commun. 2001, 637.

    70. [70]

      Lauterwasser, F.; Hayes, P. G.; Bräse, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234. 

    71. [71]

      Huynh, K.; Anderson, B. K.; Livinghouse, T. Tetrahedron Lett. 2015, 56, 3658. 

    72. [72]

      Otero, A.; Lara-Sánchez, A.; Castro-Osma, J. A.; Márquez- Segovia, I.; Alonso-Moreno, C.; Fernández-Baeza, J.; Sánchez- Barba, L. F.; Rodríguez, A. M. New J. Chem. 2015, 39, 7672. 

    73. [73]

      Pohlki, F.; Doye, S. Angew. Chem., Int. Ed. 2001, 40, 2305. (b) Straub, B. F.; Bergman, R. G. Angew. Chem., Int. Ed. 2001, 40, 4632. (c) Tobisch, S. Chem. Eur. J. 2007, 13, 4884. 

    74. [74]

      Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923. 

    75. [75]

      Knight, P. D.; Munslow, I.; O'Shaughnessy, P. N.; Scott, P. Chem. Commun. 2004, 894.

    76. [76]

      Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959. (b) Bexrud, J. A.; Schafer, L. L. Dalton Trans. 2010, 39, 361. (c) Kim, H.; Lee, P. H.; Livinghouse, T. Chem. Commun. 2005, 5205. (d) Müller, C.; Loos, C.; Schulenberg, N.; Doye, S. Eur. J. Org. Chem. 2006, 2006, 2499. (e) Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2009, 29, 24. 

    77. [77]

      Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 13405. (b) Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade, L. H. Chem. Commun. 2004, 704. 

    78. [78]

      Heutling, A.; Doye, S. J. Org. Chem. 2002, 67, 1961. 

    79. [79]

      Heutling, A.; Pohlki, F.; Doye, S. Chem. Eur. J. 2004, 10, 3059. (b) Heutling, A.; Severin, R.; Doye, S. Synthesis 2005, 1200. (c) Pohlki, F.; Heutling, A.; Bytschkov, I.; Hotopp, T.; Doye, S. Synlett 2002, 799. 

    80. [80]

      Tillack, A.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 2541. (b) Tillack, A.; Jiao, H.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Chem. Eur. J. 2004, 10, 2409. (c) Tillack, A.; Khedkar, V.; Beller, M. Tetrahedron Lett. 2004, 45, 8875. 

    81. [81]

      Buil, M. L.; Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2007, 26, 554. (b) Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2005, 24, 5084. (c) Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2006, 25, 1448.

    82. [82]

      Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967. (b) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2002, 21, 5148. 

    83. [83]

      Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

    84. [84]

      Ackermann, L. Organometallics 2003, 22, 4367. 

    85. [85]

      Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.; Payne, P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116. 

    86. [86]

      Tonks, I. A.; Meier, J. C.; Bercaw, J. E. Organometallics 2013, 32, 3451. 

    87. [87]

      Yim, J. C.; Bexrud, J. A.; Ayinla, R. O.; Leitch, D. C.; Schafer, L. L. J. Org. Chem. 2014, 79, 2015. 

    88. [88]

      Brahms, C.; Tholen, P.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2013, 7583.

    89. [89]

      Dorfler, J.; Preuss, T.; Brahms, C.; Scheuer, D.; Doye, S. Dalton Trans 2015, 44, 12149.

    90. [90]

      Lühning, L. H.; Brahms, C.; Nimoth, J. P.; Schmidtmann, M.; Doye, S. Z. Anorg. Allg. Chem. 2015, 641, 2071. 

    91. [91]

      Liu, J.; Cao, Y.; Li, L.; Pei, H.; Chen, Y.; Hu, J.; Qin, Y.; Li, Y.; Li, W.; Liu, W. RSC Adv. 2015, 5, 10318.

    92. [92]

      Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. 

    93. [93]

      Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956. 

    94. [94]

      Tobisch, S. Dalton Trans. 2006, 4277.

    95. [95]

      Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 18246. 

    96. [96]

      Leitch, D. C.; Turner, C. S.; Schafer, L. L. Angew. Chem., Int. Ed. 2010, 49, 6382. 

    97. [97]

      Leitch, D. C.; Platel, R. H.; Schafer, L. L. J. Am. Chem. Soc. 2011, 133, 15453. 

    98. [98]

      Allan, L. E. N.; Clarkson, G. J.; Fox, D. J.; Gott, A. L.; Scott, P. J. Am. Chem. Soc. 2010, 132, 15308. 

    99. [99]

      Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422. 

    100. [100]

      Wang, X.; Chen, Z.; Sun, X. -L.; Tang, Y.; Xie, Z. Org. Lett. 2011, 13, 4758.

    101. [101]

      Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Chem. Commun. 2015, 51, 7633.

    102. [102]

      Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Dalton Trans. 2015, 44, 20352.

    103. [103]

      Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004, 23, 1845.

    104. [104]

      Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6, 2519. (b) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2006, 8, 2445. 

    105. [105]

      Anderson, L. L.; Schmidt, J. A.; Arnold, J.; Bergman, R. G. Organometallics 2006, 25, 3394. 

    106. [106]

      Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731. 

    107. [107]

      Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Organometallics 2007, 26, 1729. (b) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354. 

    108. [108]

      Manna, K.; Everett, W. C.; Schoendorff, G.; Ellern, A.; Windus, T. L.; Sadow, A. D. J. Am. Chem. Soc. 2013, 135, 7235. (b) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed. 2011, 50, 1865. 

    109. [109]

      Zhou, X.; Wei, B.; Sun, X.-L.; Tang, Y.; Xie, Z. Chem. Commun. 2015, 51, 5751.

    110. [110]

      Zhai, H.; Borzenko, A.; Lau, Y. Y.; Ahn, S. H.; Schafer, L. L. Angew. Chem., Int. Ed. 2012, 51, 12219. 

    111. [111]

      Manna, K.; Eedugurala, N.; Sadow, A. D. J. Am. Chem. Soc. 2015, 137, 425. 

    112. [112]

      Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080. 

    113. [113]

      Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451. (b) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750. 

    114. [114]

      Akermark, B.; Almemark, M.; Jutandm, A. Acta Chem. Scand. B 1982, 36. (b) Baranano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 2937. (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.

    115. [115]

      Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451. (b) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371. 

    116. [116]

      Beller, M.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed. 1997, 36, 2225. 

    117. [117]

      Bauer, E. B.; Andavan, G. S.; Hollis, T. K.; Rubio, R. J.; Cho, J.; Kuchenbeiser, G. R.; Helgert, T. R.; Letko, C. S.; Tham, F. S. Org. Lett. 2008, 10, 1175. (b) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. (c) Dorta, R.; Egli, P.; Zürcher, F.; Togni, A. J. Am. Chem. Soc. 1997, 119, 10857. (d) Sappa, E.; Milone, L. J. Organomet. Chem. 1973, 61, 383. 

    118. [118]

      Ohmiya, H.; Moriya, T.; Sawamura, M. Org. Lett. 2009, 11, 2145.

    119. [119]

      Pouy, M. J.; Delp, S. A.; Uddin, J.; Ramdeen, V. M.; Cochrane, N. A.; Fortman, G. C.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M.; Myers, W. H. ACS Catal. 2012, 2, 2182. 

    120. [120]

      Bahri, J.; Blieck, R.; Jamoussi, B.; Taillefer, M.; Monnier, F. Chem. Commun. 2015, 51, 11210.

    121. [121]

      Biyikal, M.; Löhnwitz, K.; Meyer, N.; Dochnahl, M.; Roesky, P. W.; Blechert, S. Eur. J. Inorg. Chem. 2010, 2010, 1070.

    122. [122]

      Sarish, S. P.; Schaffner, D.; Sun, Y.; Thiel, W. R. Chem. Commun. 2013, 49, 9672. 

    123. [123]

      Bernoud, E.; Oulie, P.; Guillot, R.; Mellah, M.; Hannedouche, J. Angew. Chem., Int. Ed. 2014, 53, 4930. 

    124. [124]

      Ambuehl, J.; Pregosin, P. S.; Venanzi, L. M.; Consiglio, G.; Bachechi, F.; Zambonelli, L. J. Organomet. Chem. 1979, 181, 255. (b) Seligson, A. L.; Trogler, W. C. Organometallics 1993, 12, 744. 

    125. [125]

      Müller, T. E.; Berger, M.; Grosche, M.; Herdtweck, E.; Schmidtchen, F. P. Organometallics 2001, 20, 4384. (b) Seul, J. M.; Park, S. J. Chem. Soc., Dalton Trans. 2002, 1153. 

    126. [126]

      Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349. (b) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 2006, 4555.

    127. [127]

      Cheng, X.; Hii, K. K. M. Tetrahedron 2001, 57, 5445. 

    128. [128]

      Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366. 

    129. [129]

      Karshtedt, D.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640. (b) Li, X.; Chianese, A. R.; Vogel, T.; Crabtree, R. H. Org. Lett. 2005, 7, 5437. (c) Senn, H. M.; Blöchl, P. E.; Togni, A. J. Am. Chem. Soc. 2000, 122, 4098. (d) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798. 

    130. [130]

      Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.; Müller, T.; Thiel, O. Chem. Eur. J. 1999, 5, 1306. (b) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1166. 

    131. [131]

      Su, R. Q.; Müller, T. E. Tetrahedron 2001, 57, 6027. (b) Su, R. Q.; Nguyen, V. N.; Müller, T. E. Top. Catal. 2003, 22, 23. 

    132. [132]

      Müller, T. E.; Lercher, J. A.; Van Nhu, N. AIChE J. 2003, 49, 214. 

    133. [133]

      Müller, T. E.; Pleier, A.-K. J. Chem. Soc., Dalton Trans. 1999, 583.

    134. [134]

      Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter, E.; Yan, Y.-K. Organometallics 2000, 19, 170.

    135. [135]

      Penzien, J.; Haeßner, C.; Jentys, A.; Köhler, K.; Müller, T. E.; Lercher, J. A. J. Catal. 2004, 221, 302. 

    136. [136]

      Shanbhag, G. V.; Kumbar, S. M.; Joseph, T.; Halligudi, S. B. Tetrahedron Lett. 2006, 47, 141. 

    137. [137]

      Neff, V.; Muller, T. E.; Lercher, J. A. Chem. Commun. 2002, 906.

    138. [138]

      Shanbhag, G. V.; Halligudi, S. J. Mol. Catal. A: Chem. 2004, 222, 223. 

    139. [139]

      Peeters, A.; Valvekens, P.; Ameloot, R.; Sankar, G.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2013, 3, 597. 

    140. [140]

      Lühl, A.; Nayek, H. P.; Blechert, S.; Roesky, P. W. Chem. Commun. 2011, 47, 8280. 

    141. [141]

      Lühl, A.; Hartenstein, L.; Blechert, S.; Roesky, P. W. Organometallics 2012, 31, 7109. (b) Pissarek, J.-W.; Schlesiger, D.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2009, 351, 2081. 

    142. [142]

      Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333.

    143. [143]

      Liu, G.-Q.; Li, Y.-M. Tetrahedron Lett. 2011, 52, 7168.

    144. [144]

      Tsuchimoto, T.; Aoki, K.; Wagatsuma, T.; Suzuki, Y. Eur. J. Org. Chem. 2008, 2008, 4035.

    145. [145]

      Pews-Davtyan, A.; Beller, M. Chem. Commun. 2011, 47, 2152.

    146. [146]

      Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Org. Lett. 2008, 10, 2377. (b) Patil, N. T.; Singh, V. Chem. Commun. 2011, 47, 11116.

    147. [147]

      Zille, M.; Stolle, A.; Wild, A.; Schubert, U. S. RSC Adv. 2014, 4, 13126. 

    148. [148]

      Chilleck, M. A.; Hartenstein, L.; Braun, T.; Roesky, P. W.; Braun, B. Chem. Eur. J. 2015, 21, 2594. 

    149. [149]

      Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669. 

    150. [150]

      Reyes-Sa'nchez, A. N.; Cañavera-Buelvas, F.; Barrios- Francisco, R.; Cifuentes-Vaca, O. L.; Flores-Alamo, M.; Garci'a, J. J. Organometallics 2011, 30, 3340. 

    151. [151]

      Reyes-Sanchez, A.; Garcia-Ventura, I.; Garcia, J. J. Dalton. Trans. 2014, 43, 1762. 

    152. [152]

      Manan, R. S.; Kilaru, P.; Zhao, P. J. Am. Chem. Soc. 2015, 137, 6136. 

    153. [153]

      Ackermann, L.; Song, W.; Sandmann, R. J. Organomet. Chem. 2011, 696, 195. 

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    3. [3]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(0)
  • Abstract views(4604)
  • HTML views(1253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return