Citation: Zhang Haifeng, Yang Junyan, Wu Jianxin, Mao Haifang, Sun Xiaoling. Research Progress of Lignin Oxidative Degradation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1266-1286. doi: 10.6023/cjoc201511049 shu

Research Progress of Lignin Oxidative Degradation

  • Corresponding author: Sun Xiaoling, xiaolingsun1@msn.com
  • Received Date: 25 November 2015
    Revised Date: 28 January 2016

    Fund Project: Project supported by the Key Projects of Innovation and Entrepreneurship of College Students in Shanghai No.PE2014032and the Capacity-building Projects in Shanghai Local Universities No.15120503700

Figures(23)

  • Lignin is the second most abundant natural polymer. Oxidative degradation of lignin polymer is a very promising approach in lignin valorisation, which offers the possibility to provide highly functional monomer and oligomer products in the chemical and pharmaceutical industries instead of fossil fuels used as the starting materials of the process of other valorisation. This paper focuses on the oxidative modification methods of lignin and its model compounds, including biocatalysis, biomimetic catalysis, organometallic catalysis, electrochemistry catalytic oxidation and several other oxidation methods, and a brief discussion of the reaction mechanism in the process of oxidative degradation.
  • 加载中
    1. [1]

       

    2. [2]

      Stern, D. I. Ann. N. Y. Acad. Sci. 2011, 1219, 26. 

    3. [3]

      Bentley, R. W. Energy Policy 2002, 30, 189. 

    4. [4]

      Chang, C. C. Appl. Energy 2010, 87, 3533. 

    5. [5]

      Tverberg, G. E. Energy 2012, 37, 27. 

    6. [6]

      Zhang, N.; Lior, N.; Jin, H. Energy 2011, 36, 3639.

    7. [7]

      Srirangan, K.; Akawi, L.; Moo-Young, M. Appl. Energy 2012, 100, 172.

    8. [8]

    9. [9]

    10. [10]

      Crestini, C.; Crucianelli, M.; Orlandi, M. Catal. Today 2010, 156, 8 . 

    11. [11]

    12. [12]

      El Mansouri, N. E.; Yuan, Q. L.; Huang, F. R. BioResources 2011, 6, 2492.

    13. [13]

      Yue, X. P.; Chen, F. G.; Zhou, X. S. BioResources 2011, 6, 2022.

    14. [14]

      Mohamad Ibrahim, M. N.; Ahmed-Haras, M. R.; Sipaut, C. S. Carbohydr. Polym. 2010, 80, 1102. 

    15. [15]

      Zhang, X. H.; Zhang, Q.; Wang, T. J.; Ma L. L. Bioresource Technol. 2013, 134, 73. 

    16. [16]

      Lange, H.; Decina, S.; Crestini, C. Eur. Poly. J. 2013, 49, 1151.

    17. [17]

      Sun, R.; Lawther, J. M.; Banks, W. B. Ind. Crops Prod. 1995, 4, 241. 

    18. [18]

      Shi, L. L.; Yu, H. B.; Dong, T. B.; Kong W. Process Biochem. 2014, 49, 1097. 

    19. [19]

      Galli, C.; Gentili, P.; Acunzo, F. New J. Chem. 2006, 30, 583.

    20. [20]

      Crestini, C.; D'Annibale, A.; Sermanni, G. G. Bioorg. Med. Chem. 2000, 8, 433. 

    21. [21]

      Crestini, C.; Saladino, R.; Tagliatesta, P. Bioorg. Med. Chem. 1999, 7, 1897. 

    22. [22]

      Zhu, W.; Ford, W. T. J. Mol. Catal. 1993, 78, 367. 

    23. [23]

      Gouvêa, C. A. K.; Wypych, F.; Moraes, S. G. Chemosphere 2000, 40, 427. 

    24. [24]

    25. [25]

      Biannic, B.; Bozell, J. Org. Lett. 2013, 15, 2730.

    26. [26]

      Sedai, B.; Diaz-Urrutia, C.; Baker, R. T. ACS Catal. 2013, 3, 3111. 

    27. [27]

      Crestini, C.; Pro, P.; Neri, V. Bioorg. Med. Chem. 2005, 13, 2569. 

    28. [28]

      Vladimir, A. G.; Craig, L. H.; Ira, A. W. Oxidative Delignification Chemistry, Montereal, 2001, P. 297.

    29. [29]

      Zhu, H. B.; Wang, L.; Chen, Y. M. RSC Adv. 2014, 4, 29917. 

    30. [30]

      Cui X. M.; Liang J. D.; Wang D. Q. J. Chem. Technol. Biotechnol. 2015, 90, 747.

    31. [31]

      Rahimi, A.; Azarpira, A.; Kim H. J. Am. Chem. Soc. 2013, 135, 6415.

    32. [32]

      Badamali, S. K.; Luque, R.; Clark, J. H. Catal. Commun. 2013, 31, 1. 

    33. [33]

      Nie, S.; Liu, X.; Wu, Z. Chem. Eng. J. 2014, 241, 410.

    34. [34]

      Ferm, R.; Kringsta, K. P.; Cowling, E. B. Sven. Papperstidn. 1972, 75, 859.

    35. [35]

      Wariishi, H.; Akileswaran, L.; Gold, M. H. Biochemistry 1988, 27, 5365. 

    36. [36]

      Wariishi, H.; Valli, K.; Gold, M. H. J. Biol. Chem. 1992, 267, 23688.

    37. [37]

      Wariishi, H.; Valli, K.; Gold, M. H. Biochemistry 1989, 28, 6017. 

    38. [38]

      Tuor, U.; Wariishi, H.; Schoemaker, H. E.; Gold, M. H. Biochemistry 1992, 31, 4986. 

    39. [39]

      D'Annibale, A.; Crestini, C.; Mattia, E. D.; Sermanni G. G. J. Biotechnol. 1996, 48, 231. 

    40. [40]

      Saliu, F.; Tolppa, E.; Zoia, L.; Orlandi, M. Tetrahedron Lett. 2011, 52, 3856.

    41. [41]

      Claudia ,C.; Raffaella, P.; Raffaele, S. Appl. Catal. A-Gen. 2010, 372, 115. 

    42. [42]

      Lundquist, K.; Kristersson, P. Biochem. J. 1985, 229, 277.

    43. [43]

      Call, H. P.; Mücke, I. J. Biotechnol. 1997, 53, 163.

    44. [44]

      Kirk, T. K.; Chang, H. M.; Butterworth-Heinemann, B. Massachusetts. 1990, 666, 99.

    45. [45]

      Higuchi, T. Wood Sci. Technol. 1990, 24, 23. 

    46. [46]

      Shleev, S.; Christenson, A.; Serezhenkov, V. Biochem. J. 2005, 385, 745.

    47. [47]

      Messerschmidt, A.; Huber, R. Eur. J. Biochem. 1990, 187, 341.

    48. [48]

      Majcherczyk, A.; Johannes, C.; Hüttermann, A. Appl. Microbiol. Biot. 1999, 51, 267. 

    49. [49]

      Crestini, C.; Jurasek, L.; Argyropoulos, D. S. Chem.-Eur. J. 2003, 9, 5371. 

    50. [50]

      Rodríguez, C. S.; Osma, J. F.; Saravia, V. Appl. Catal. A-Gen. 2007, 329, 156. 

    51. [51]

      Krajewska, B. Enzyme Microb. Technol. 2004, 35, 126.

    52. [52]

      Cho, Y. K.; Bailey, J. E. Biotechnol. Bioeng. 1979, 21, 461. 

    53. [53]

      Abadulla, E.; Tzanov, T.; Costa, S. Appl. Environ. Microb. 2000, 66, 3357. 

    54. [54]

      Ryan, S.; Schnitzhofer, W.; Tzanov, T. Enzyme Microb. Technol. 2003, 33, 766.

    55. [55]

      Kandelbauer, A.; Maute, O.; Kessler, R. W. Biotechnol. Bioeng. 2004, 87, 552. 

    56. [56]

      Osma, J. F.; Toca-Herrera, J. L.; Rodríguez-Couto, S. Bioresource Technol. 2010, 101, 8509.

    57. [57]

      Held, C.; Kandelbauer, A.; Schroeder, M. Environ. Chem. Lett. 2005, 3, 74. 

    58. [58]

      Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210, 831.

    59. [59]

      Peyratout, C. S.; Dähne, L. Angew. Chem., Int. Ed. 2004, 43, 3762. 

    60. [60]

      Rochefort, D.; Kouisni, L.; Gendron, K. J. Electroanal. Chem. 2008, 617, 53. 

    61. [61]

      Hébert, M.; Rochefort, D. ECS Trans. 2008, 16, 85.

    62. [62]

      Di, S. M.; Maturo, C.; De, A. E. Catal. Today 2003, 79, 333.

    63. [63]

      Crestini, C.; Perazzini, R.; Saladino, R. Appl. Catal. A-Gen. 2010, 372, 115. 

    64. [64]

      Guazzaroni, M.; Crestini, C.; Saladino, R. Bioorg. Med. Chem. 2012, 20, 157. 

    65. [65]

      Perazzini, R.; Saladino, R.; Guazzaroni, M. Bioorg. Med. Chem. 2011, 19, 440. 

    66. [66]

      Crestini, C.; Melone, F.; Saladino, R. Bioorg. Med. Chem. 2011, 19, 5071. 

    67. [67]

      Tien, M.; Kirk, T. K. Science 1983, 221, 661. 

    68. [68]

      Song, R.; Sorokin, A.; Bernadou, J. J. Org. Chem. 1997, 62, 673. 

    69. [69]

      Venkatasubbaiah, K.; Zhu, X.; Kays, E. ACS Catal. 2011, 1, 489.

    70. [70]

      Baker, J. H. F. M. S. Thesis, Eastern Kentucky University, Kentucky, 2012.

    71. [71]

      Jiang, Q.; Sheng, W.; Guo, X. J. Mol. Catal. A-Chem. 2013, 373, 121. 

    72. [72]

      Crestini, C.; Saladino, R.; Tagliatesta, P. Bioorg. Med. Chem. 1999, 7, 1897. 

    73. [73]

      Crestini, C.; Pastorini, A.; Tagliatesta, P. Eur. J. Inorg. Chem. 2004, 2004, 4477.

    74. [74]

      Zucca, P.; Sollai, F.; Garau, A. J. Mol. Catal. A 2009, 306, 89. 

    75. [75]

      Kumar, A.; Jain, N.; Chauhan, S. M. S. Synlett 2007, 411.

    76. [76]

      Crestini, C.; Pastorini, A.; Tagliatesta, P. J. Mol. Catal. A 2004, 208, 195. 

    77. [77]

      Zucca, P.; Mocci, G.; Rescigno, A. J. Mol. Catal. A 2007, 278, 220. 

    78. [78]

      Barros, V. P.; Faria, A. L.; MacLeod, T. C. O. Int. Biodeterior Biodegrad. 2008, 61, 337. 

    79. [79]

      Pattou, D.; Labat, G.; Defrance, S. B. Soc. Chim. Fr. 1994, 131, 78.

    80. [80]

      Shimada, M.; Habe, T.; Higuchi, T. Holzforschung 1987, 41, 277.

    81. [81]

      Cui, F.; Dolphin, D. Bioorg. Med. Chem. Lett. 1995, 3, 471. 

    82. [82]

      Barbat, A.; Gloaguen, V.; Sol, V. Bioresource Technol. 2010, 101, 6538.

    83. [83]

      Meunier, B.; Sorokin, A. Acc. Chem. Res. 1997, 30, 470. 

    84. [84]

      Kawai, S.; Ohashi, H. Phys. Technol. Wood 1993, 47, 97.

    85. [85]

      Barton, D. H. R.; Delanghe, N. C.; Patin, H. Tetrahedron 1997, 53, 16017. 

    86. [86]

      Walker, C. C.; Dinus, R. J.; McDonough, T. J. Holzforschung 1999, 53,181.

    87. [87]

      Watanabe, T.; Koller, K.; Messner, K. J. Biotechnol. 1998, 62, 221.

    88. [88]

      Mirkhani, V.; Moghadam, M.; Tangestaninejad, S. Catal. Commun. 2008, 9, 219.

    89. [89]

      Badamali, S. K.; Luque, R.; Clark, J. H. Catal. Commun. 2011, 12, 993. 

    90. [90]

      Gupta, K. C.; Sutar, A. K. J. Mol. Catal. A 2007, 272, 64. 

    91. [91]

      Cedeno, D.; Bozell, J. J. Tetrahedron Lett. 2012, 53, 2380. . 

    92. [92]

      Kogami, Y.; Nakajima, T. Ikeno, T.; Yamada, T. Synthesis 2004, 1947.

    93. [93]

      Park, J.; Lang, K.; Abboud, K. A. J. Am. Chem. Soc. 2008, 130, 16484. 

    94. [94]

      Guo, X. F.; Kim, Y. S.; Kim, G. J. Top. Catal. 2009, 52, 153. 

    95. [95]

      Bozell, J.; Elder, T. J. Green Chem. 2014, 16, 3635. 

    96. [96]

      Zakzeski, J.; Jongerius, A. L.; Weckhuysen, B. M. Green Chem. 2010, 12, 1225. 

    97. [97]

      Watanabe, E.; Kaiho, A.; Kusama, H. J. Am. Chem. Soc. 2013, 135, 11744. 

    98. [98]

      Sonar, S.; Ambrose, K.; Hendsbee, A. D. Can. J. Chem. 2011, 90, 60.

    99. [99]

      Zhou, X. -F. J. Appl. Polym. Sci. 2014, 131, 9594.

    100. [100]

      Bernini, R.; Mincione, E.; Cortese, M. Tetrahedron Lett. 2001, 42, 5401.

    101. [101]

      Kühn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem. 2004, 689, 4149. 

    102. [102]

      Zhu, Z.; Espenson, J. H. J. Org. Chem. 1995, 60, 7728. 

    103. [103]

      Jacob, J.; Espenson, J. H. Inorg. Chim. Acta 1998, 270, 55. 

    104. [104]

      Herrmann, W. A.; Fischer, R. W.; Scherer, W. Angew. Chem., Int. Ed. 1993, 32, 1157. 

    105. [105]

      Adam, W.; Herrmann, W. A.; Saha-Möller, C. R. J. Mol. Catal. A 1995, 97, 15. 

    106. [106]

      Amorati, R.; Pedulli, G. F.; Valgimigli, L.; Attanasi, O. A.; Filippone, P.; Fiorucci, C.; Saladino, R. J. Chem. Soc., Perkin Trans. 2 2001, 2142.

    107. [107]

      Saladino, R.; Gualandi, G.; Farina, A. Curr. Med. Chem. 2008, 15, 1500.

    108. [108]

      Saladino, R.; Neri, V.; Mincione, E. Marini,S.; Coletta, M.; Fiorucci, C.; Filippone, P. J. Chem. Soc., Perkin Trans. 1 2000, 581.

    109. [109]

      Saladino, R.; Mincione, E.; Attanasi, O. A. Pure Appl. Chem. 2003, 75, 265.

    110. [110]

      Saladino, R.; Neri, V.; Mincione, E. Tetrahedron 2002, 58, 8493.

    111. [111]

      Crestini, C.; Caponi, M. C. Argyropoulos, D. S. Bioorg. Med. Chem. 2006, 14, 5292. 

    112. [112]

      Saladino, R.; Neri, V.; Pelliccia, A. R. J. Org. Chem. 2002, 67, 1323. 

    113. [113]

      Bujanovic, B.; Ralph, S.; Reiner, R. Mater 2010, 3, 1888.

    114. [114]

      Lv, H.; Geletii, Y. V.; Zhao, C. Chem. Soc. Rev. 2012, 41, 7572. 

    115. [115]

      Gaspar, A.; Evtuguin, D. V.; Pascoal, N. C. Appl. Catal. A 2003, 239, 157. 

    116. [116]

      Zhao, Y.; Xu, Q.; Pan, T. Appl. Catal. A 2013, 467, 504. 

    117. [117]

      Yokoyama, T.; Chang, H.; Reiner, R. S. Holzforschung 2004, 58, 116.

    118. [118]

      Voitl, T.; Rudolf, . R. P. V. ChemSusChem 2008, 1, 763.

    119. [119]

      Weinstock, I. A.; Barbuzzi, E. M. G.; Wemple, M. W. Nature 2001, 414, 191. 

    120. [120]

      Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357. 

    121. [121]

      Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901. 

    122. [122]

      Ansari, I. A.; Gree, R. Org. Lett. 2002, 4, 1507.

    123. [123]

      Dijksman, A.; Marino-Gonzalez, A.; Mairata, I. P. A. J. Am. Chem. Soc. 2001, 123, 6826. 

    124. [124]

      Zhao, M.; Li, J.; Mano, E. J. Am. Chem. Soc. 1999, 64, 2564.

    125. [125]

      Karimi, B.; Farhangi, E. Chem.-Eur. J. 2011, 17, 6056. 

    126. [126]

      Nooy, A. E. J. D.; Besemer, A. C.; Bekkum, H. V. Carbohydr. Res. 1995, 269, 89. 

    127. [127]

      Kato, Y.; Matsuo, R.; Isogai, A. Carbohydr. Polym. 2003, 51, 69.

    128. [128]

      Jiang, B.; Drouet, E.; Milas, M. Carbohydr. Res. 2000, 327, 455.

    129. [129]

      Fraschini, C.; Vignon, M. R. Carbohydr. Res. 2000, 328, 585. 

    130. [130]

      Saito, T.; Nishiyama, Y. ; Putaux, J. L. Biomacromolecules 2006, 7, 1687. 

    131. [131]

      Saito, T.; Isogai, A. Biomacromolecules 2004, 5, 1983.

    132. [132]

      Sedai, B.; Diaz-Urrutia, C.; Baker, R. T. C. ACS Catal. 2011, 1, 794. 

    133. [133]

      Sedai, B.; Baker, R. T. Adv. Synth. Catal. 2014, 356, 3563. 

    134. [134]

      Omori, S.; Dence, C. W. Wood Sci. Technol. 1981, 15, 67. 

    135. [135]

      Sawaki, Y.; Foote, C. S. J. Am. Chem. Soc. 1983, 105, 5035. 

    136. [136]

      Lanzalunga, O.; Bietti, M. J. Photochem. Photobiol. B 2000, 56, 85. 

    137. [137]

      Kovalenko, E. I.; Popova, O. V.; Aleksandrov, A. A. Russ. J. Electrochem. 2000, 36, 706. 

    138. [138]

      Parpot, P.; Bettencourt, A. P.; Carvalho, A. M. J. Appl. Electrochem. 2000, 30, 727. 

    139. [139]

      Pelegrini, R.; Reyes, J.; Duran, N. J. Appl. Electrochem. 2000, 30, 953. 

    140. [140]

      Lu, Z.; Tu, B.; Chen, F. J. Wood Chem. Technol. 2003, 23, 261. 

    141. [141]

      Tolba, R.; Tian, M.; Wen, J. J. Electroanal. Chem. 2010, 649, 9. 

    142. [142]

      Tian, M.; Wen, J.; MacDonald, D. Electrochem. Commun. 2010, 12, 527.

    143. [143]

      Pan, K.; Tian, M. ; Jiang, Z. H. Electrochim. Acta. 2012, 60, 147. 

    144. [144]

      Brandt, A.; Hallett, J. P.; Leak, D. J. Green Chem. 2010, 12, 672. 

    145. [145]

      Liu, S.; Shi, Z.; Li, L. RSC Adv. 2013, 3, 5789.

    146. [146]

      Reichert, E.; Wintringer, R.; Volmer, D. A. Phys. Chem. Chem. Phys. 2012, 14, 5214. 

    147. [147]

      Shao, D.; Liang, J.; Cui, X. Chem. Eng. J. 2014, 244, 288.

    148. [148]

      Cui, X. M, Liang, J. D, Wang, D. Q. J. Chem. Technol. Biotechnol. 2015, 90, 747. 

    149. [149]

      Voort, P. V. D.; Vercaemst, C.; Schaubroeck, D. Phys. Chem. Chem. Phys. 2008, 10, 347. 

    150. [150]

      Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Mater. 2000, 12, 1403. 

    151. [151]

      Itoh, A.; Kodama, T.; Masaki, Y. Chem. Pharm. Bull. 2006, 54, 1571. 

    152. [152]

      Badamali, S. K.; Clark, J. H.; Breeden, S. W. Catal. Commun. 2008, 9, 2168. 

    153. [153]

      Beck, J. S.; Vartuli, J. C.; Roth, W. J. J. Am. Chem. Soc. 1992, 114, 10834. 

    154. [154]

      Badamali, S. K.; Luque, R.; Clark, J. H. Catal. Commun. 2009, 10, 1010. 

    155. [155]

    156. [156]

      Hoareau, W.; Trindade, W. G.; Siegmund, B. Polym. Degrad. Stabil. 2004, 86, 567. 

    157. [157]

      Nie, S.; Liu, X.; Wu, Z. Chem. Eng. J. 2014, 241, 410.

    158. [158]

      Svenson, D. R.; Kadla, J. F.; Chang, H. Ind. Eng. Chem. Res. 2002, 41, 5927. 

    159. [159]

      Das, L.; Kolar, P.; Sharma-Shivappa, R. Biofuels 2012, 3, 155.

    160. [160]

      Kobayakawa, K.; Sato, Y.; Nakamura, S. B. Chem. Soc. Jpn. 1989, 62, 3433. 

    161. [161]

      Gouvêa, C. A. K.; Wypych, F.; Moraes, S. G. Chemosphere 2000, 40, 427. 

    162. [162]

      Machado, A. E. H. Furuyama, A. M.; Falone, S. Z. Chemosphere 2000, 40, 115. 

    163. [163]

      Kansal, S. K.; Singh, M. Sud, D. J. Hazard. Mater. 2008, 153, 412. 

    164. [164]

      Ma, Y. S.; Chang, C. N.; Chiang, Y. P. Chemosphere 2008, 71, 998. 

    165. [165]

      Portjanskaja, E.; Stepanova, K.; Klauson, D. Catal. Today 2009, 144, 26. 

    166. [166]

      Rangel, R.; Mercado, G. J.; Bartolo-Pérez, P. Sci. Adv. Mater. 2012, 4, 573. 

    167. [167]

    168. [168]

      Sheldon, R. A.; Lau, R. M.; Sorgeddrager, M. J.; Rantwijk, F. V.; Seddon, K. R. Green Chem. 2002, 4, 147. 

    169. [169]

      Sang, H. L.; Thomas, V. D.; Robert, J. L.; Jonathan, S. D. Biotechnol. Bioeng. 2009, 102, 1368. 

    170. [170]

      Fort, D. A.; Remsing, R. C.; Swatloski ,R. P.; Rogers, R. D. Green Chem. 2007, 9, 63. 

    171. [171]

      Michael, Z.; Daniela B.; Matthias F.; Jochen, B.; Antje, C. S. Bioresour. Technol. 2009, 100, 2580. 

    172. [172]

      Sun, N.; Rahman, M.; Qin,Y.; Mirela, L. M.; Robin, D. R. Green Chem. 2009, 11, 646. 

    173. [173]

      Pu, Y. Q.; Nan, J.; Arthur, J. R. Wood Chem. Technol. 2007, 27, 23. 

    174. [174]

      Tan, S. S.Y.; MacFarlane, D. R.; Edye, L. A.; Pringle, J. M. Green Chem. 2009, 11, 339. 

    175. [175]

      Jürgen, V.; Tina, E.; Claudia, H.; Ulrich, S. S. Green Chem. 2009, 11, 417. 

    176. [176]

      Magorzata, E. Z.; Bogel-Lukasik, E. Energy Fuels 2010, 24, 737. 

    177. [177]

      Nan, J.; Arthur, J. R. J. Org. Chem. 2007, 72, 7030. 

    178. [178]

      Stärk, K.; Taccardi, N.; Bösmann, A. ChemSusChem 2010, 3, 719.

    179. [179]

      Sun, X. L.; Yang, J.; Zhang, H.; Shen, Y.; Bi, Y.; Miao, H.; Mao, H. CN 105037116A 2015 [Chem. Abstr. 2015, 163, 702069].

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    14. [14]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(0)
  • Abstract views(4838)
  • HTML views(1407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return