Citation: Zou Huan, Shi Jingjing, Fang Yue, Ge Wenhui, Wang Yuanjiang, Wang Haiying, Wan Yu, Wu Hui. Synthesis and Properties of New Imidazole-Based Organic Fluorescent Small Molecule[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1395-1400. doi: 10.6023/cjoc201511048 shu

Synthesis and Properties of New Imidazole-Based Organic Fluorescent Small Molecule

  • Corresponding author: Wu Hui, shijianyoude@126.com;zhangmei63@126.com
  • Received Date: 23 December 2015
    Revised Date: 22 January 2016

    Fund Project: and the China Postdoctoral Science Foundation No. 2014M552374Project supported by the National Natural Science Foundation of China No. 81302643

Figures(6)

  • A series of phenothiazine (or triphenylamine)-substituted imidazoles were designed and synthesized as new organic fluorescent molecules by multi-step reactions. The relationship of their photoluminescence properties and structure was investigated via UV-Vis, fluorescence and electrochemical analyzer. Their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributions were calculated by density functional theory (DFT) (B3LYP; 6-31G*) calculations. The high fluorescence quantum yields, desirable HOMO levels and high thermal stabilities of products indicated that the combination of imidazole and phenothiazines or triphenylamine is an efficient way to enhance hole transporting ability and fluorescent quantum yield.
  • 加载中
    1. [1]

      Tang, C. W.; Van, Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 

    2. [2]

      Shi, J.; Tang, C.W. Appl. Phys. Lett. 1997, 70, 1665. 

    3. [3]

      Kulkami, A.P.; Tonzola, C. J.; Bable, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. 

    4. [4]

      Pu, L. Chem. Rev. 1998, 98, 2405.

    5. [5]

      Thelakkat, M. Macromol. Mater. Eng. 2002, 287, 442.

    6. [6]

      Shirota, Y. Mater. Chem. 2000, 10, 21.

    7. [7]

      Shirota, Y.; Mater. Chem. 2005, 15, 75. 

    8. [8]

      Song, Y.; Di, C.; Yang, X.; Li, S.; Xu, W.; Liu, Y. J. Am. Chem. Soc. 2006, 128, 15940. 

    9. [9]

      Saragi, T. P. I.; Lieker, T. F.; Salbeck, J. Adv. Funct. Mater. 2006, 16, 966. 

    10. [10]

      Bordeau, G.; Lartia, R.; Metge, G.; Fiorini-Debuisschert, C.; Charra, F.; Teulade-Fichou, M. P. J. Am. Chem. Soc. 2008, 130, 16836. 

    11. [11]

      Bhaskar, A.; Ramakrishna, G.; Lu, Z.; Twieg, R.; Hales, J. M.; Hagan, D. J.; Van, S. E.; Goodson, T. J. Am. Chem. Soc. 2006, 128, 11840. 

    12. [12]

      Tian, H. N.; Yang, X. C.; Chen, R. K.; Pan, Y. Z.; Li, L.; Hagfeldt, A., Sun, L. C. Chem. Commun. 2007, 36, 3741.

    13. [13]

      Guerret, O.; Sole, S.; Gornitzka, H.; Teichert, M.; Trinquier, G.; Bertrand, G. J. Am. Chem. Soc. 1997, 119, 6668. 

    14. [14]

      Kawai, S.; Yamaguchi, T.; Kato, T.; Hatano, S.; Abe, J. Dyes Pigm. 2012, 92, 872.

    15. [15]

      Adam, B. P.; Suzuki, Y.; Ueda, M.; Bielawski, C. W.; Cowley, A. H. J. Am. Chem. Soc. 2011, 133, 5218. 

    16. [16]

      Dhirendra, K.; Justin, T. K. R.; Lin, C. C.; Jou, J. H.; Chem.-Asian J. 2013, 8, 2111. 

    17. [17]

      Yousuke, O.; Hironori, K.; Kazuki, U.; Katsuhira, Y. Tetrahedron 2009, 65, 8336.

    18. [18]

      Hu, N. X.; Xie, S.; Popovic, Z. D.; Wong, B. A.; Hor, M. Synth. Met. 2000, 111, 421.

    19. [19]

      Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D. J. Am. Chem. Soc. 2003, 125, 14816. 

    20. [20]

      Janietz, S.; Bradley, D. D. C; Grell, M.; Giebeler, C.; Inbaselatan, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453. 

    21. [21]

      Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551.

    22. [22]

      Kamtekar, K. T.; Wang, C.; Bettington, S.; Batsanov, A. S.; Perepichka, I. F.; Bryce, M. R.; Ahn, J. H.; Rabinal, M.; Petty, M. C. J. Mater. Chem. 2006, 16, 3823. 

    23. [23]

      Thelakkat, M.; Schmidt, H. W. Adv. Mater. 1998, 10, 219. 

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A. Gaussian 03, revision C.01, Pittsburgh, PA, Gaussian, Inc., 2004.

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(0)
  • Abstract views(1733)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return