Citation: Wang Yanbao, Zhao Baoxiang. Recent Progress in Fluorescent Probes for the Detection of Hypochlorous Acid[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1539-1554. doi: 10.6023/cjoc201511038 shu

Recent Progress in Fluorescent Probes for the Detection of Hypochlorous Acid

  • Corresponding author: Zhao Baoxiang, bxzhao@sdu.edu.cn
  • Received Date: 19 November 2015
    Revised Date: 7 March 2016

Figures(16)

  • Hypochlorous acid (HClO) is one of the biologically important reactive oxygen species (ROS), which plays important roles in the human immune defence system, and contributes to the destruction of invading bacteria and pathogens. But excessive formation of HClO can lead to tissue damage and a series of human diseases, such as atherosclerosis, arthritis and even cancers, etc. Therefore, a rapid, sensitive, and selective detection of HClO in biological samples is important. In recent years, fluorescent probes for HClO have been developed due to various advantages such as simplicity of operation, lower limit of detection, low toxicity, high sensitivity and selectivity. A general overview of the recent research on the design, synthesis and application of fluorescent probes for hypochlorous acid is provided.
  • 加载中
    1. [1]

      Dickinson, B. C.; Huynh, C.; Chang, C. J. J. Am. Chem. Soc. 2010, 132, 5906. 

    2. [2]

      Zielonka, J.; Sikora, A.; Hardy, M.; Joseph, J.; Dranka, B. P.; Kalyanaraman, B. Chem. Res. Toxicol. 2012, 25, 1793. 

    3. [3]

      Zhu, H. J.; Xu, H. D.; Yan, Y. H.; Zhang, K.; Yu, T.; Jiang, H.; Wang, S. H. Sens. Actuators, B 2014, 202, 667. 

    4. [4]

      Yuan, L.; Lin, W. Y.; Chen, H. Biomaterials 2013, 34, 9566. 

    5. [5]

      Winterbourn, C. C. Biochim. Biophys. Acta 2014, 1840, 730. 

    6. [6]

      Kettle, A. J.; Albrett, A. M.; Chapman, A. L.; Dickerhof, N.; Forbes, L. V.; Khalilova, I.; Turner, R. Biochim. Biophys. Acta 2014, 1840, 781. 

    7. [7]

      Patterson, E. K.; Fraser, D. D.; Capretta, A.; Potter, R. F.; Cepinskas, G. Free Radical Biol. Med. 2014, 70, 167.

    8. [8]

      Xiao, H. D.; Xin, K.; Dou, H. F.; Yin, G.; Quan, Y. W.; Wang, R. Y. Chem. Commun. 2015, 51, 1442. 

    9. [9]

      Yue, Y. K.; Yin, C. X.; Huo, F. J.; Chao, J. B.; Zhang, Y. B. Sens. Actuators, B 2014, 202, 551. 

    10. [10]

      Zhang, R.; Song, B.; Dai, Z. C.; Ye, Z. Q.; Xiao, Y. N.; Liu, Y.; Yuan, J. L. Biosens. Bioelectron. 2013, 50, 1. 

    11. [11]

      Wu, Z. S.; Wu, X. J.; Li, Z.; Yang, Y. H.; Han, J. H.; Han, S. F. Bioorg. Med. Chem. Lett. 2013, 23, 4354. 

    12. [12]

      Aiken, M. L.; Painter, R. G.; Zhou, Y.; Wang, G. S. Free Radical Biol. Med. 2012, 53, 2308. 

    13. [13]

      Petrônio, M. S.; Ximenes, V. F. Biochim. Biophys. Acta 2012, 1824, 1090. 

    14. [14]

      Goswami, S.; Maity, S.; Maity, A. C.; Das, A. K. Sens. Actuators, B 2014, 204, 741. 

    15. [15]

      Ellis, D.; Thomas, R. C. Nature 1976, 262, 224. 

    16. [16]

      Zhang, R. G.; Kelen, S. G.; LaManna, J. C. J. Appl. Phys. 1990, 68, 1101. 

    17. [17]

      Hesse, S. J. A.; Ruijter, G. J. G.; Dijkema, C.; Vissser, J. J. Biotechnol. 2000, 77, 5. 

    18. [18]

      Huang, Y. Y.; Wang, M. J.; Yang, Z.; She, M. Y.; Wang, S.; Liu, P.; Li, J. L.; Shi, Z. Chin. Chem. Lett. 2014, 25, 1077.

    19. [19]

      Zhang, D. Q. Spectrochim. Acta A 2010, 77, 397. 

    20. [20]

      Uno, S.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.; Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita, S.; Urano, Y. Nat. Chem. 2014, 6, 681.

    21. [21]

      Yang, Y. T.; Yin, C. X.; Huo, F. J.; Chao, J. B.; Zhang, Y. B.; Jin, S. Sens. Actuators, B 2014, 199, 226. 

    22. [22]

      Ximenes, V. F.; Fonseca, L. M.; Almeida, A. C. Arch. Biochem. Biophys. 2011, 507, 315. 

    23. [23]

      Dickinson, B. C.; Srikun, D.; Chang, C. J. Curr. Opin. Chem. Biol. 2010, 14, 50. 

    24. [24]

      Painter, R. G.; Marrero, L.; Lombard, G. A.; Valentine, V. G.; Nauseef, W. M.; Wang, G. S. J. Leukoc. Biol. 2010, 87, 933. 

    25. [25]

      Yang, Y. C.; Lu, H. H.; Wang, W. T.; Liau, I. Anal. Chem. 2011, 83, 8267.

    26. [26]

      Kim, G.; Lee, Y. E. K.; Xu, H.; Philbert, M. A.; Kopelman, R. Anal. Chem. 2010, 82, 2165.

    27. [27]

      Shi, W.; Ma, H. M. Chem. Commun. 2012, 48, 8732. 

    28. [28]

      Zheng, H.; Zhan, X. Q.; Bian, Q. N.; Zhang, X. J. Chem. Commun. 2013, 49, 429. 

    29. [29]

      Wang, B. S.; Li, P.; Yu, F. B.; Chen, J. S.; Qu, Z. J.; Han, K. L. Chem. Commun. 2013, 49, 5790. 

    30. [30]

      Zhang, Q. J.; Zhu, Z. C.; Zheng, Y. L.; Cheng, J. G.; Zhang, N.; Long, Y. T.; Zheng, J.; Qian, X. H.; Yang, Y. J. J. Am. Chem. Soc. 2012, 134, 18479. 

    31. [31]

      Chen, G.; Song, F.; Wang, J.; Yang, Z.; Sun, S.; Fan, J.; Qiang, X.; Wang, X.; Dou, B.; Peng, X. Chem. Commun. 2012, 48, 2949.

    32. [32]

      Ding, Y. B.; Tang, Y. Y.; Zhu, W. H.; Xie, Y. S. Chem. Soc. Rev. 2015, 44, 1101. 

    33. [33]

      Xie Y.S.; Wei. P. C.; Li, X.; Hong, T.; Zhang, K.; Furuta, H. J. Am. Chem. Soc. 2013, 135, 19119. 

    34. [34]

      Ding, Y. B.; Li, X.; Li, T.; Zhu, W. H.; Xie, Y. S. J. Org. Chem. 2013, 78, 5328. 

    35. [35]

      Chen, B.; Ding, Y. B.; Li, X.; Zhu, W. H.; Hill, J. P.; Ariga, K.; Xie, Y. S. Chem. Commun. 2013, 49, 10136. 

    36. [36]

      Xie, Y. S.; Ding, Y. B.; Li, X.; Wang, C.; Hill, J. P.; Ariga, K.; Zhang, W. B.; Zhu, W. H. Chem. Commun. 2012, 48, 11513. 

    37. [37]

      Ding, Y. B.; Xie, Y. S; Li, X.; Hill, J. P.; Zhang, W. B.; Zhu, W. H. Chem. Commun. 2011, 47, 5431. 

    38. [38]

       

    39. [39]

       

    40. [40]

       

    41. [41]

       

    42. [42]

       

    43. [43]

      Dickinson, B. C.; Chang, C. J. Nat. Chem. Biol. 2011, 7, 504. 

    44. [44]

      Cheng, X.; Jia, H.; Long, T.; Feng, J.; Qin, J.; Li, Z. Chem. Commun. 2011, 47, 11978.

    45. [45]

      Egawa, T.; Koide, Y.; Hanaoka, K.; Komatsu, T.; Terai, T.; Nagano, T. Chem. Commun. 2011, 47, 4162.

    46. [46]

      Liu, S. R.; Vedamalai, M.; Wu, S. P. Anal. Chim. Acta. 2013, 800, 71. 

    47. [47]

      Gai, L. Z.; Mack, J.; Liu, H.; Xu, Z.; Lu, H.; Li, Z. F. Sens. Actuators, B 2013, 182, 1. 

    48. [48]

      Zhu, H.; Fan, J. L.; Wang, J. Y.; Mu, H. Y.; Peng, X. J. J. Am. Chem. Soc. 2014, 136, 12820. 

    49. [49]

      Park, J.; Kim, H.; Choi, Y.; Kim, Y. Analyst 2013, 138, 3368.

    50. [50]

      Emrullahoğlu, M.; Üçüncü, M.; Karakuş, E. Chem. Commun. 2013, 49, 7836.

    51. [51]

      Hu, J. J.; Wong, N. K.; Gu, Q. S.; Bai, X. Y.; Ye, S.; Yang, D. Org. Lett. 2014, 16, 3544.

    52. [52]

      Liu, S. R.; Wu, S. P. Org. Lett. 2013, 15, 878. 

    53. [53]

      Venkatesan, P.; Wu, S. P. Analyst 2015, 140, 1349. 

    54. [54]

      Yuan, L.; Lin, W. Y.; Yang, Y. T.; Chen, H. J. Am. Chem. Soc. 2012, 134, 1200. 

    55. [55]

      Zhang, Z.; Zheng, Y.; Hang, W.; Yan, X. M.; Zhao, Y. F. Talanta 2011, 85, 779. 

    56. [56]

      Zhan, X. Q.; Yan, J. H.; Su, J. H.; Wang, Y. C.; He, J.; Wang, S. Y.; Zheng, H.; Xu, J. G. Sens. Actuators, B 2010, 150, 774. 

    57. [57]

      Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 5680. 

    58. [58]

      Hu, Z. Q.; Zhu, J. H.; Gu, Y. Y.; Hu, W. Z.; Li, M.; Jiang, Y. Microchim. Acta 2014, 181, 1401.

    59. [59]

      Yuan, L.; Lin, W. Y.; Xie, Y. N.; Chen, B.; Song, J. Z. Chem. Eur. J. 2012, 18, 2700. 

    60. [60]

      Zuo, Q. P.; Li, Z. J.; Hu, Y. H.; Li, B.; Huang, L. H.; Wang, C. J.; Liu, S. K.; Liao, H. Q. J. Fluoresc. 2012, 22, 1201. 

    61. [61]

      Zhang, Z.; Deng, C. Q.; Meng, L. S.; Zheng, Y.; Yan, X. M. Anal. Methods 2015, 7, 107. 

    62. [62]

      Zhou, J.; Li, L. H.; Shi, W.; Gao, X. H.; Li, X. H.; Ma, H. M. Chem. Sci. 2015, 6, 4884. 

    63. [63]

      Liu, Y. L.; Sun, Y.; Du, J.; Lv, X.; Zhao, Y.; Chen, M. L.; Wang, P.; Guo, W. Org. Biomol. Chem. 2011, 9, 432. 

    64. [64]

      Zhang, Y. R.; Meng, N.; Miao, J. Y.; Zhao, B. X. Chem. Eur. J. 2015, 21, 19058. 

    65. [65]

      Tang, Z; Ding, X. L.; Liu, Y.; Zhao Z. M. Zhao, B. X. RSC Adv. 2015, 5, 99664. 

    66. [66]

      Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973. 

    67. [67]

      Xu, Q. L.; Lee, K. A.; Lee, S.; Lee, K. M.; Lee, W. J.; Yoon, J. J. Am. Chem. Soc. 2013, 135, 9944. 

    68. [68]

      Huo, F. J.; Zhang, J. J.; Yang, Y. T.; Chao, J. B.; Yin, C. X.; Zhang, Y. B.; Chen, T. G. Sens. Actuators, B 2012, 166, 44.

    69. [69]

      Best, Q. A.; Sattenapally, N.; Dyer, D. J.; Scott, C. N.; McCarroll, M. E. J. Am. Chem. Soc. 2013, 135, 13365. 

    70. [70]

      Jin, X. L.; Hao, L. K.; Hu, Y. L.; She, M. Y.; Shi, Y. N.; Obst, M.; Li, J. L.; Shi, Z. Sens. Actuators, B 2013, 186, 56. 

    71. [71]

      Yin, W. Z.; Zhu, H. J.; Wang, R. Y. Dyes Pigm. 2014, 107, 127. 

    72. [72]

      Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis, C. J.; Waggoner, A. S. Bioconjug. Chem. 1993, 4, 105. 

    73. [73]

      Lou, Z. R.; Li, P.; Song, P.; Han, K. L. Analyst. 2013, 138, 6291. 

    74. [74]

      Cheng, G. H.; Fan, J. L.; Sun, W.; Cao, J. F.; Hu, C.; Peng, X. J. Chem. Commun. 2014, 50, 1018. 

    75. [75]

      Sun, M. T.; Yu, H.; Zhu, H. J.; Ma, F.; Zhang, S.; Huang, D. J.; Wang, S. H. Anal. Chem. 2014, 86, 671. 

    76. [76]

      Zhang, W. J.; Guo, C.; Liu, L. H.; Qin, J. G.; Yang, C. L. Org. Biomol. Chem. 2011, 9, 5560. 

    77. [77]

      Zhang, W. J.; Liu, L. H.; Liu, L.; Qin, J. G.; Yang, C. L. Polym. Chem. 2012, 50, 1174. 

    78. [78]

      Zhang, W. J.; Li, C. G.; Qin, J. G.; Yang, C. L. Polymer 2012, 53, 2356. 

    79. [79]

      Wysockia, L. M.; Lavis, L. D. Curr. Opin. Chem. Biol. 2011, 15, 752. 

    80. [80]

      Yu, S. Y.; Hsu, C. Y.; Chen, W. C.; Wei, L. F.; Wu, S. P. Sens. Actuators, B 2014, 196, 203. 

    81. [81]

      Li, G. P.; Zhu, D. J.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 2002.

    82. [82]

      Zhang, Y. R.; Chen, X. P.; Shao, J.; Zhang, J. Y.; Yuan, Q.; Miao, J. Y.; Zhao, B. X. Chem. Commun. 2014, 50, 14241.

    83. [83]

      Hou, J. T.; Li, K.; Yang, J.; Yu, K. K.; Liao, Y. X.; Ran, Y. Z.; Liu, Y. H.; Zhou, X. D.; Yu, X. Q. Chem. Commun. 2015, 51, 6781. 

    84. [84]

      Zhang, Y. R.; Zhao, Z. M.; Su, L.; Miao, J. Y.; Zhao, B. X. RSC Adv. 2016, 6, 17059. 

    85. [85]

      Terai, T.; Nagano, T. Pflugers Arch. 2013, 465, 347. 

    86. [86]

      Yu, X. J.; Zhang, W. Z.; Ye, Z. Q.; Song, B.; Yuan, J. L. J Fluoresc, 2015, 5, 1581.

    87. [87]

      Yuan , L.; Lin, W. Y.; Song, J. Z.; Yang, Y. T. Chem. Commun. 2011, 47, 12691. 

    88. [88]

      Liu, F. Y.; Gao, Y. L.; Wang, J. T.; Sun, S. G. Analyst 2014, 139, 3324. 

    89. [89]

      Zhang, R.; Ye, Z. Q.; Song, B.; Dai, Z. C.; An, X.; Yuan, J. L. Inorg. Chem. 2013, 52, 10325. 

    90. [90]

      Ye, Z. Q.; Zhang, R.; Song, B.; Dai, Z. C.; Jin, D. Y.; Goldys, E. M.; Yuan, J. L. Dalton Trans. 2014, 43, 8414. 

    91. [91]

      Xiao, Y. N.; Zhang, R.; Ye, Z. Q.; Dai, Z. C.; An, H. Y.; Yuan, J. L. Anal. Chem. 2012, 84, 10785. 

    92. [92]

      Shi, J.; Li, Q. Q.; Zhang, X.; Peng, M.; Qin, J. G.; Li, Z. Sens. Actuators, B 2010, 145, 583. 

    93. [93]

      Liao, Y. X.; Wang, M. D.; Li, K.; Yang, Z. X.; Hou, J. T.; Wu, M. Y.; Liu, Y. H.; Yu, X. Q. RSC Adv., 2015, 5, 18275. 

    94. [94]

      Zhang, W.; Liu, W.; Li, P.; Kang, J. Q.; Wang, J. Y.; Wang, H.; Tang, B. Chem. Commun. 2015, 51, 10150.

    95. [95]

      Li, J. F.; Huo, F. J.; Yin, C. X. RSC Adv. 2014, 4, 44610. 

    96. [96]

      Li, D. X.; Feng, Y.; Lin, J. Z.; Chen, M.; Wang, S. X.; Wang, X.; Sheng, H. T.; Shao, Z. L.; Zhu, M. Z.; Meng, X. M. Sens. Actuators, B 2016, 222, 483. 

    97. [97]

      Xu, Q. L.; Heo, C. H.; Kim, G. H.; Lee, W.; Kim, H. M.; Yoon, J. Angew. Chem., Int. Ed. 2015, 54, 4890. 

    98. [98]

      Wang, X. M.; Wang, X. H.; Feng, Y.; Zhu, M. Z.; Yin, H.; Guo, Q. X.; Meng, X. M. Dalton Trans. 2015, 44, 6613. 

    99. [99]

      Yuan, L.; Wang, L.; Agrawalla, B. K.; Park, S. J.; Zhu, Ha.; Sivaraman, B.; Peng, J. J.; Xu, Q. H.; Chang, Y. T. J. Am. Chem. Soc. 2015, 137, 5930. 

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    6. [6]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    7. [7]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    8. [8]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    12. [12]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    18. [18]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    19. [19]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    20. [20]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

Metrics
  • PDF Downloads(0)
  • Abstract views(6643)
  • HTML views(1508)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return