Citation: Chen Huajie. Recent Advances in High-Mobility Polymeric Semiconductor Materials[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 460-479. doi: 10.6023/cjoc201511026 shu

Recent Advances in High-Mobility Polymeric Semiconductor Materials

  • Corresponding author: Chen Huajie, chenhjoe@163.com
  • Received Date: 15 November 2015
    Revised Date: 30 December 2015

    Fund Project: the Natural Science Foundation of Hunan Province 2015JJ3122the China Postdoctoral Science Foundation 2015T80877the National Natural Science Foundation of China 51403177the China Postdoctoral Science Foundation 2014M552141the Science and Technology Planning Project of Hunan Province 2015RS4025

Figures(9)

  • Significant progress has been made in polymeric semiconductors and their organic field-effect transistors (OFETs) since 1980s. To date, hundreds of polymeric semiconductors have been reported and used for OFETs. The hole mobility above 36.3 cm2·V-1·s-1 has been achieved, which can be competitive with organic small semiconductors and even amorphous silicon. In this review, the recent progress in high-mobility polymeric semiconductor materials has been summarized from the perspective of design, synthesis, and OFET devices performance. Moreover, the recent developments are systematically summarized and analyzed according to different types of polymeric semiconductors, including p-type, n-type, and ambipolar polymeric semiconductors. The analysis about the relationship among the molecular structure-aggregation structure-OFET devices performance may guide the rational molecule design in the polymeric semiconductor materials with excellently comprehensive performance in the future.
  • 加载中
    1. [1]

      Xia, X.; Lei, T.; Pei, J.; Liu, C. J. Chin. J. Org. Chem. 2014, 34, 1905 (in Chinese).  doi: 10.6023/cjoc201403052
       

    2. [2]

      Wan, G.; Fu, Y. A.; Guo, J. N.; Xiang, Z. H. Acta Chim. Sinica 2015, 73, 557 (in Chinese).  doi: 10.6023/A15020106

    3. [3]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.  doi: 10.1021/cr100380z

    4. [4]

      Guo, X.; Facchetti, A.; Marks, T. J. Chem. Rev. 2014, 114, 8943.  doi: 10.1021/cr500225d

    5. [5]

      Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.  doi: 10.1063/1.97417

    6. [6]

      Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.  doi: 10.1063/1.96937

    7. [7]

      Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.  doi: 10.1063/1.98799

    8. [8]

      Sang, M.; Cao, S. Z.; Lai, W. Y.; Huang, W. Acta Chim. Sinica 2015, 73, 770 (in Chinese).

    9. [9]

      Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.  doi: 10.1021/ja039772w

    10. [10]

      Chabinyc, M. L.; Endicott, F.; Vogt, B. D.; DeLongchamp, D. M.; Lin, E. K.; Wu, Y.; Liu, P.; Ong, B. S. Appl. Phys. Lett. 2006, 88, 113514/1.  doi: 10.1063/1.2181206

    11. [11]

      McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328.  doi: 10.1038/nmat1612

    12. [12]

      Kim, D. H.; Lee, B. L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J.; Han, K. M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. N. J. Am. Chem. Soc. 2009, 131, 6124.  doi: 10.1021/ja8095569

    13. [13]

      Lim, B.; Baeg, K. J.; Jeong, H. G.; Jo, J.; Kim, H.; Park, J. W.; Noh, Y. Y.; Vak, D.; Park, J. H.; Park, J. W.; Kim, D. Y. Adv. Mater. 2009, 21, 2808.  doi: 10.1002/adma.200803700

    14. [14]

      Kim, J.; Lim, B.; Baeg, K. J.; Noh, Y. Y.; Khim, D.; Jeong, H. G.; Yun, J. M.; Kim, D. Y. Chem. Mater. 2011, 23, 4663.  doi: 10.1021/cm2021802

    15. [15]

      Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B.; Yan, F.; Kline, R.; Anthopoulos, T.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154.  doi: 10.1021/ja508798s

    16. [16]

      Jang, S.; Kim, I.; Kim, J.; Khim, D.; Jung, E.; Kang, B.; Lim, B.; Kim, Y.; Jang, Y.; Cho, K.; Kim, D. Chem. Mater. 2014, 26, 6907.  doi: 10.1021/cm502486n

    17. [17]

      Zhang, M.; Tsao, H. T.; Pisula, W.; Yang, C.; Mishra, A. K.; Müllen, K. J. Am. Chem. Soc. 2007, 129, 3472.  doi: 10.1021/ja0683537

    18. [18]

      Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess H. W.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 2605.  doi: 10.1021/ja108861q

    19. [19]

      Zhang, W.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2010, 132, 11437.  doi: 10.1021/ja1049324

    20. [20]

      Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; Delongchamp, D. M. Nat. Commun. 2013, 4, 2238.

    21. [21]

      Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T.; Heeney, M. Adv. Mater. 2015, DOI: 10.1002/adma.201504092.  doi: 10.1002/adma.201504092

    22. [22]

      Ying, L.; Hsu, B. B. Y.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T. Q.; Heeger, A. J.; Wong, W. Y.; Bazan, G. C. J. Am. Chem. Soc. 2011, 133, 18538.  doi: 10.1021/ja207543g

    23. [23]

      Tseng, H. R.; Ying, L.; Hsu, B. B.; Perez, L. A.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nano Lett. 2012, 12, 6353.  doi: 10.1021/nl303612z

    24. [24]

      Tseng, H.-R.; Phan, H.; Luo, C.; Wang, M.; Perez, L. A.; Patel, S. N.; Ying, L.; Kramer, E. J.; Nguyen, T.-Q.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2014, 26, 2993.  doi: 10.1002/adma.201305084

    25. [25]

      Luo, C.; Kyaw, A. K. K.; Perez, L. A.; Patel, S.; Wang, M.; Grimm, B.; Bazan, G. C.; Kramer, E. J.; Heeger, A. J. Nano Lett. 2014, 14, 2764.  doi: 10.1021/nl500758w

    26. [26]

      Fan, J.; Yuen, J. D.; Cui, W. B.; Seifter, J.; Mohebbi, A. R.; Wang, M.; Zhou, H.; Heeger, A. J.; Wudl, F. Adv. Mater. 2012, 24, 6164.  doi: 10.1002/adma.v24.46

    27. [27]

      Nketia-Yawson, B.; Lee, H. S.; Seo, D.; Yoon, Y.; Park, W. T.; Kwak, K.; Son, H. J.; Kim, B. S.; Noh, Y. Y. Adv. Mater. 2015, 27, 3045.  doi: 10.1002/adma.201500233

    28. [28]

      Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801.  doi: 10.1002/adma.v26.12

    29. [29]

      Stalder, R.; Mei, J.; Reynolds, J. R. Macromolecules 2010, 43, 8348.  doi: 10.1021/ma1018445

    30. [30]

      Lei, T.; Cao, Y.; Fan, Y.; Liu, C.; Yuan, S.; Pei, J. J. Am. Chem. Soc. 2011, 133, 6099.  doi: 10.1021/ja111066r

    31. [31]

      Lei, T.; Dou, J.; Pei, J. Adv. Mater. 2012, 24, 6457.  doi: 10.1002/adma.v24.48

    32. [32]

      Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130.  doi: 10.1021/ja209328m

    33. [33]

      Mei, J.; Wu, H.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W. Y.; Kurosawa, T.; Chen, W.; Bao, Z. Adv. Funct. Mater. 2015, 25, 3455.  doi: 10.1002/adfm.v25.23

    34. [34]

      Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.  doi: 10.1039/c2cc30169e

    35. [35]

      Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. D. J. Am. Chem. Soc. 2014, 136, 9477.  doi: 10.1021/ja504537v

    36. [36]

      Cao, Y.; Yuan, J.; Zhou, X.; Wang, X.; Zhuang, F.; Wang, J.; Pei, J. Chem. Commun. 2015, 51, 10514.  doi: 10.1039/C5CC02026C

    37. [37]

      Shi, S.; Xie, X.; Gao, C.; Shi, K.; Chen, S.; Yu, G.; Guo, L.; Li, X.; Wang, H. Macromolecules 2014, 47, 616.  doi: 10.1021/ma402107n

    38. [38]

      Shi, S.; Shi, K.; Yu, G.; Li, X.; Wang, H. RSC Adv. 2015, 5, 70319.  doi: 10.1039/C5RA14721B

    39. [39]

      Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2013, 25, 1859.  doi: 10.1002/adma.v25.13

    40. [40]

      Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.; Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Fréchet, J. M. J. Adv. Mater. 2011, 23, 5359.  doi: 10.1002/adma.201103177

    41. [41]

      Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H. J.; Winnewisser, C. Adv. Mater. 2008, 20, 2217.  doi: 10.1002/(ISSN)1521-4095

    42. [42]

      Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; Meurs, M.; Tan, J. J. Am. Chem. Soc. 2011, 133, 2198.  doi: 10.1021/ja1085996

    43. [43]

      Ha, J. S.; Kim, K. H.; Choi, D. H. J. Am. Chem. Soc. 2011, 133, 10364.  doi: 10.1021/ja203189h

    44. [44]

      Li, Y.; Singh, S. P.; Sonar, P. Adv. Mater. 2010, 22, 4862.  doi: 10.1002/adma.201002313

    45. [45]

      Li, J.; Zhao, Y.; Tan, H.; Guo, Y.; Di, C.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; Ong, B. S. Sci. Rep. 2012, 2, 754.

    46. [46]

      Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272.  doi: 10.1021/ja110619k

    47. [47]

      Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y. Adv. Mater. 2012, 24, 4618.  doi: 10.1002/adma.v24.34

    48. [48]

      Liu, X.; Guo, Y.; Ma, Y.; Chen, H.; Mao, Z.; Wang, H.; Yu, G.; Liu, Y. Adv. Mater. 2014, 26, 3631.  doi: 10.1002/adma.v26.22

    49. [49]

      Kang, I.; An, T. K.; Hong, J.; Yun, H. J.; Kim, R.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. Adv. Mater. 2013, 25, 524.  doi: 10.1002/adma.201202867

    50. [50]

      Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.  doi: 10.1021/ja405112s

    51. [51]

      Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S. K.; Oh, J. H.; Kim, Y. H. Chem. Mater. 2015, 27, 1732.  doi: 10.1021/cm504545e

    52. [52]

      Shin, J.; Hong, T. R.; Lee, T. W.; Kim, A.; Kim, Y. H.; Cho, M. J.; Choi, D. H. Adv. Mater. 2014, 26, 6031.  doi: 10.1002/adma.201401179

    53. [53]

      Yun, H. J.; Lee, G.; Chung, D. S.; Kim, Y. H.; Kwon, S. K. Adv. Mater. 2014, 26, 6612.  doi: 10.1002/adma.v26.38

    54. [54]

      Choi, H. H.; Baek J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S. K.; Kim, Y. H. Adv. Mater. 2015, 27, 3626.  doi: 10.1002/adma.v27.24

    55. [55]

      Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.  doi: 10.1021/cr0501543

    56. [56]

      Usta., H.; Facchetti, A.; Marks, T. J. Acc. Chem. Res. 2011, 44, 501.  doi: 10.1021/ar200006r

    57. [57]

      Tang, M.; Bao, Z. Chem. Mater. 2011, 23, 446.  doi: 10.1021/cm102182x

    58. [58]

      Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.  doi: 10.1021/ja0371810

    59. [59]

      Briseno, A. L.; Mannsfeld, S. C. B.; Shamberger, P. J.; Ohuchi, F. S.; Bao, Z.; Jenekhe, S. A.; Xia, Y. Chem. Mater. 2008, 20, 4712.  doi: 10.1021/cm8010265

    60. [60]

      Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246.  doi: 10.1021/ja071760d

    61. [61]

      Zhao, X.; Ma, L.; Zhang, L.; Wen, Y.; Chen, J.; Shuai, Z.; Liu, Y.; Zhan, X. Macromolecules 2013, 46, 2152.  doi: 10.1021/ma302428x

    62. [62]

      Chen, Z.; Zheng, Y.; Yan, H.; Facchetti, A. J. Am. Chem. Soc. 2008, 131, 8.

    63. [63]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    64. [64]

      Mercier, L. G.; Leclerc. M. Acc. Chem. Res. 2013, 46, 1597.  doi: 10.1021/ar3003305

    65. [65]

      Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. J. Am. Chem. Soc. 2015, 137, 6705.  doi: 10.1021/jacs.5b03355

    66. [66]

      Chen, H.; Guo, Y.; Mao, Z.; Yu, G.; Huang, J.; Zhao, Y.; Liu, Y. Chem. Mater. 2013, 25, 3589.  doi: 10.1021/cm401130n

    67. [67]

      Kim, R.; Amegadze, P.; Kang, I.; Yun, H.; Noh, Y.; Kwon, S.; Kim, Y. Adv. Funct. Mater. 2013, 23, 5719.  doi: 10.1002/adfm.v23.46

    68. [68]

      Kim, R.; Kang, B.; Sin, D.; Choi, H.; Kwon, S.; Kim, Y.; Cho, K. Chem. Commun. 2015, 51, 1524.  doi: 10.1039/C4CC08381D

    69. [69]

      Kim, Y.; Long, D.; Lee, J.; Kim, G.; Shin, T.; Nam, K.; Noh, Y.; Yang, C. Macromolecules 2015, 48, 5179.  doi: 10.1021/acs.macromol.5b01012

    70. [70]

      Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679.  doi: 10.1021/ja710815a

    71. [71]

      Guo, X.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y. Y.; Baeg, K. J.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 1405.  doi: 10.1021/ja107678m

    72. [72]

      Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K.; Amassian, A.; Anthopoulos, T. D.; Pathil, S. J. Am. Chem. Soc. 2012, 134, 16532.  doi: 10.1021/ja308211n

    73. [73]

      Park, J. H.; Jung, E. H.; Jung, W. J.; Jo, W. H. Adv. Mater. 2013, 25, 2583.  doi: 10.1002/adma.201205320

    74. [74]

      Blom, P. W. M.; Jong, M. J. M.; Munster, M. G. Phys. Rev. B 1997, 55, 655.

    75. [75]

      Meijer, E. J.; De, L. D. M.; Setayesh, S.; Veenendaal, E. V.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.  doi: 10.1038/nmat978

    76. [76]

      Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.  doi: 10.1038/nature03376

    77. [77]

      Lei, T.; Dou, J.; Cao, X.; Wang, J.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168.  doi: 10.1021/ja403624a

    78. [78]

      Lei, T.; Xia, X.; Wang, J.; Liu, C.; Pei, J. J. Am. Chem. Soc. 2014, 136, 2135.  doi: 10.1021/ja412533d

    79. [79]

      Kim, F. S.; Guo, X.; Watson, M. D.; Jenekhe, S. A. Adv. Mater. 2010, 22, 478.  doi: 10.1002/adma.v22:4

    80. [80]

      Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.  doi: 10.1021/ja907506r

    81. [81]

      Lin, H. W.; Lee, W. Y.; Chen, W. J. Mater. Chem. 2012, 22, 2120.  doi: 10.1039/C1JM14640H

    82. [82]

      Chen, Z.; Lee, M. J.; Ashraf, R. S.; Gu, Y.; Albert-Seifried, S.; Nielsen, M. M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H. Adv. Mater. 2012, 24, 647.  doi: 10.1002/adma.201102786

    83. [83]

      Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713.  doi: 10.1021/ja308927g

    84. [84]

      Lee, J.; Han, A.; Yu, H.; Shin, T.; Yang, C.; Oh, J. J. Am. Chem. Soc. 2013, 135, 9540.  doi: 10.1021/ja403949g

    85. [85]

      Sonar, P.; Singh, S. P.; Li, Y. N.; Soh, M. S.; Dodabalapur, A. Adv. Mater. 2010, 22, 5409.  doi: 10.1002/adma.201002973

    86. [86]

      Kronemeijer, A. J.; Gili, E.; Shahid, M.; Rivnay, J.; Salleo, A.; Heeney, M.; Sirringhaus, H. Adv. Mater. 2012, 24, 1558.  doi: 10.1002/adma.201104522

    87. [87]

      Yun, H.; Kang, S.; Xu, Y.; Kim, S.; Kim, Y.; Noh, Y.; Kwon, S. Adv. Mater. 2014, 26, 7300.  doi: 10.1002/adma.v26.43

    88. [88]

      Gao, Y.; Zhang, X.; Tian H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2015, 27, 6753.  doi: 10.1002/adma.201502896

    89. [89]

      Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Adv. Mater. 2014, 26, 2636.  doi: 10.1002/adma.v26.17

    90. [90]

      Xiao, C.; Zhao, C.; Zhang, A.; Jiang, W.; Janssen, R.; Li, W.; Hu, W.; Wang, Z. Adv. Mater. 2015, 27, 4963.  doi: 10.1002/adma.201502617

    91. [91]

      Li, C.; Mao, Z.; Chen, H.; Zheng, L.; Huang, J.; Zhao, B.; Tan, S.; Yu, G. Macromolecules 2015, 48, 2444.  doi: 10.1021/acs.macromol.5b00067

    92. [92]

      Yuen, J. D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger, A. J.; Wudl, F. J. Am. Chem. Soc. 2011, 133, 20799.  doi: 10.1021/ja205566w

    93. [93]

      Fan, J.; Yuen, J. D.; Wang, M. F.; Seifter, J.; Seo, J. H.; Mohebbi, A. R.; Zakhidov, D.; Heeger, A. J.; Wudl, F. Adv. Mater. 2012, 24, 2186.  doi: 10.1002/adma.201103836

    94. [94]

      Lei, T.; Dou, J.; Ma, Z.; Yao, C.; Liu, C.; Wang, J.; Pei, J. J. Am. Chem. Soc. 2012, 134, 20025.  doi: 10.1021/ja310283f

    95. [95]

      Lei, T.; Dou, J.; Ma, Z.; Liu, C.; Wang, J.; Pei, J. Chem. Sci. 2013, 4, 2447.  doi: 10.1039/c3sc50245g

    96. [96]

      Cai, Z.; Luo, H.; Qi, P.; Wang, J.; Zhang, G.; Liu, Z.; Zhang, D. Macromolecules 2014, 47, 2899.  doi: 10.1021/ma5003694

    97. [97]

      He, B.; Pun, A.; Zherebetskyy, D.; Liu, Y.; Liu, F.; Klivansky, L.; McGough, A.; Zhang, B.; Lo, K.; Russell, T.; Wang, L.; Liu, Y. J. Am. Chem. Soc. 2014, 136, 15093.  doi: 10.1021/ja508807m

    98. [98]

      Zhou, X.; Ai, N.; Guo, Z.; Zhuang, F.; Jiang, Y.; Wang, J.; Pei, J. Chem. Mater. 2015, 27, 1815.  doi: 10.1021/acs.chemmater.5b00018

    99. [99]

      Deng, Y.; Sun, B.; He, Z.; Quinn, J.; Guo, C.; Li, Y. Chem. Commun. 2015, 51, 13515.  doi: 10.1039/C5CC03917G

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    11. [11]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    19. [19]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(0)
  • Abstract views(5863)
  • HTML views(1742)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return