Citation: Miao Zhiwei, Cai Yan, Ge Haihong, Fu Jiaxin, Abudukeremu Munira. Research Progress of α-Diazophosphonates[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 976-986. doi: 10.6023/cjoc201511021 shu

Research Progress of α-Diazophosphonates

  • Corresponding author: Miao Zhiwei, miaozhiwei@nankai.edu.cn Abudukeremu Munira, 
  • Received Date: 12 November 2015
    Revised Date: 16 December 2015

    Fund Project: Project supported by the Committee of Science and Technology of Tianjin City No. 15JCYBJC20700and the Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry Open Subject No. 2015KL030

Figures(15)

  • Diazo compounds are the most commonly used carbene precursors. They can be dediazonized to obtain highly reactive free carbene intermediates or metal cabenoid under transition metal catalysts. Then varieties of chemical transformations can be proceeded, such as X—H (X=C, N, O, S, Si, etc.) insertions, 1,2-hydrogen migration reactions and cyclopropanations. Varieties of pharmaceuticals, natural products and other bioactive moleculars could be synthesized through these methods. As one of the most important diazo compounds α-diazophosphonates could also proceed various chemical transformations and be used to synthesize varieties of organic functional phosphorous compounds. Because organic phosphorous compounds exhibit extensive bioactivities and pharmaceutic activities, the research of α-diazophosphonates has attracted lots of attentions of scientists. The recent development of the reactions of α-diazophosphonates catalyzed by various kinds of catalysts is summarized.
  • 加载中
    1. [1]

       

    2. [2]

      Zollinger, H. Diazo Chemistry I and II, VCH, Weinheim, 1994. (b) Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Amsterdam, 2005, pp. 376~377. (c) Regitz, M.; Maas, G. Diazo Compounds-Properties and Synthesis, Academic Press, Orlando, 1986.

    3. [3]

      Wang, J.; Boyarskikh, V.; Rainier, J. D. Org. Lett. 2011, 13, 700. (b) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. S. J. Am. Chem. Soc. 2003, 125, 4692. (c) Lian, Y. J.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 11940. (d) Wang, X. C.; Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402. (e) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 133, 13314. (f) Smith, A. G.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 18241. 

    4. [4]

      Cox, G. G.; Miller, D. J.; Moody, C. J.; Robert, E.; Sie, H. B. Tetrahedron 1994, 50, 3195. 

    5. [5]

      Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org. Chem. 2003, 3798.

    6. [6]

      Candeias, N. R.; Gois, P. M. P.; Afonso, C. A. M. J. Org. Chem. 2006, 71, 5489. 

    7. [7]

      Candeias, N. R.; Gois, P. M. P.; Veiros, L. F.; Afonso, C. A. M. J. Org. Chem. 2008, 73, 5926. 

    8. [8]

      Zhu, S. F.; Chen, W. Q.; Zhang, Q. Q.; Mao, H. X.; Zhou, Q. L. Synlett2011, 919.

    9. [9]

      Hladeuk, I.; Chastagner, V.; Collins, S. G.; Plunkett, S. J.; Ford, A.; Debarge, S.; Maguire, A. R. Tetrahedron 2012, 68, 1894. 

    10. [10]

      Davis, F. A.; Wu, Y. Z.; Xu, H.; Zhang, J. Y. Org. Lett. 2004, 6, 4523. (b) Titanyuk, I. D.; Vorob'eva, D. V.; Osipov, S. N.; Beletskaya, I. P. Synlett2006, 1355. 

    11. [11]

      Ukita, T.; Nakamura, Y. Org. Lett. 2002, 4, 2317. (b) Haigh, D. Tetrahedron 1994, 50, 3177.

    12. [12]

      Xue, J. D.; Luk, H. L.; Platz, M. S. J. Am. Chem. Soc. 2011, 133, 1763. (b) Zhu, S. F.; Xu, B.; Wang, G. P.; Zhou, Q. L. J. Am. Chem. Soc. 2012, 134, 436. 

    13. [13]

      Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181. 

    14. [14]

      Salaun, J. Chem. Rev. 1989, 89, 1247. (b) Donaldson, W. A. Tetrahedron 2001, 57, 8589. (c) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251. (d) Pietruszka, J. Chem. Rev. 2003, 103, 1051. (e) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625. (f) Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493. (g) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed. 2007, 46, 7364. (h) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.

    15. [15]

      Schnaars, C.; Hansen, T. Org. Lett. 2012, 14, 2794. (b) Schnaars, C.; Hennum, M.; Hansen, T. J. Org. Chem. 2013, 78, 7488.

    16. [16]

      Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463. (b) Marcoux, D.; Goudreau, S. R.; Charette, A. B. J. Org. Chem. 2009, 74, 8939. (c) Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809. (d) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014. (e) Campbell, M. J.; Johnson, J. S. J. Am. Chem. Soc. 2008, 131, 10370. (f) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. 2007, 129, 1465. 

    17. [17]

      Briones, J. F.; Davies, H. M. L. Org. Lett. 2011, 13, 3984. 

    18. [18]

      Jiang, J.; Xu, H. D.; Xi, J. B.; Ren, B. Y.; Lv, F. P.; Guo, X.; Jiang, L. Q.; Zhang, Z. Y.; Hu, W. H. J. Am. Chem. Soc. 2011, 133, 10370. (b) Xing, D.; Hu, W. H. Tetrahedron 2014, 55, 777. (c) Zhu, Y. G.; Zhai C. W.; Yang, L. P.; Hu, W. H. Eur. J. Org. Chem. 2011, 1113. (d) Huang, H. X.; Guo, X.; Hu, W. H. Angew. Chem., Int. Ed. 2007, 46, 1337. (e) Jing, C. C.; Xing, D.; Qian, Y.; Shi, T. D.; Zhao, Y.; Hu, W. H. Angew. Chem., Int. Ed. 2013, 52, 9289. (f) Zhang, D.; Qiu, H.; Jiang, L. Q.; Lv, F. P.; Ma, C. Q.; Hu, W. H. Angew. Chem., Int. Ed. 2013, 52, 13356. (g) Zhou, C. Y.; Wang, J. C.; Wei, J. H.; Xu, Z. J.; Guo, Z.; Low, K. H.; Che, C. M. Angew. Chem., Int. Ed. 2012, 51, 11376.

    19. [19]

      Zhou, Y. J.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. B. J. Org. Chem. 2015, 80, 6109. 

    20. [20]

      Taber, D. F.; Herr, R. J.; Pack, S. K. J. Org. Chem. 1996, 61, 2908. (b) Zhang, Z. H.; Wang, J. B. Tetrahedron 2008, 64, 6577. (c) Jiang, N.; Ma, Z. H.; Qu, Z. H.; Xing, X. Y.; Xie, L. F.; Wang. J. B. J. Org. Chem. 2003, 68, 893. (d) Zhou, L.; Liu, Y. Z.; Zhang, Y.; Wang, J. B. Chem. Commun. 2011, 47, 3622. (e) Xu, F.; Zhang, S. W.; Wu, X. N.; Liu, Y.; Shi, W. F.; Wang, J. B. Org. Lett. 2006, 8, 3207. (f) Xiao, F. P.; Wang, J. B. J. Org. Chem. 2006, 71, 5789. (g) Xu, F.; Shi, W. F.; Wang, J. B. J. Org. Chem. 2005, 70, 4191. (h) Jiang, N; Qu, Z. H.; Wang, J. B. Org. Lett. 2001, 3, 2989. 

    21. [21]

      Cai, Y.; Ge, H. H.; Yu, C. B.; Sun, W. Z.; Zhan, J. C.; Miao, Z. W. RSC Adv. 2014, 4, 1492.

    22. [22]

      Ge, H. H.; Liu, S.; Cai, Y.; Sun, Y. C.; Miao, Z. W. Synthesis 2016, 48, 448.

    23. [23]

      Cai, Y.; Lyu, H. R.; Yu, C. B.; Miao, Z. W. Adv. Synth. Catal. 2014, 356, 596. 

    24. [24]

      Patil, U. D. Synlett 2009, 17, 2880. (b) Gong, D. H.; Zhang, L.; Yuan, C. Y. Synth. Commun. 2004, 34, 3259. (c) Bartnik, R.; Lesniak, S.; Wasiak, P. Tetrahedron Lett. 2004, 45, 7301. (d) Mukund, M. D.; Pramanik, A.; Chaturvediab, K.; Rastogi, N. Chem. Commun. 2014, 50, 12896. (e) Muruganantham, R.; Namboothiri, I. J. Org. Chem. 2010, 75, 2197. (f) Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2007, 9, 1125.

    25. [25]

      Verma, D.; Mobin, S.; Namboothiri, I. N. N. J. Org. Chem. 2011, 76, 4764. 

    26. [26]

      Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.; Vasseur, J. J. Angew. Chem., Int. Ed. 2010, 49, 3196. 

    27. [27]

      Cai, Y.; Lu, Y. C.; Yu, C. B.; Lyu H. R., Miao, Z. W. Org. Biomol. Chem. 2013, 11, 5491. 

    28. [28]

      Cai, Y.; Ge, H. H.; Sun, W. Z.; Miao, Z. W. Synthesis2015, 47, 1669.

    29. [29]

       

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    7. [7]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(0)
  • Abstract views(1659)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return