Citation: Zhang Haifei, Liu Dongmei, Kang Tingting, Wang Ye, Zhang Xiaoxiang, Zhu Xinbao. Synthesis of Novel Benzothiazolium Ionic Liquids and Research on Their Catalytic Esterification for Ricinoleic Acid[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 1104-1110. doi: 10.6023/cjoc201511019 shu

Synthesis of Novel Benzothiazolium Ionic Liquids and Research on Their Catalytic Esterification for Ricinoleic Acid

  • Corresponding author: Zhang Xiaoxiang, s070038@hotmail.com Zhu Xinbao, zhuxinbao@njfu.com.cn
  • Received Date: 12 November 2015
    Revised Date: 21 December 2015

    Fund Project: Project supported by the 948 Project Foundation of State Forestry Administration No.2015-4-55

Figures(3)

  • Four new task-specfic benzothiazolium ionic liquids (ILs) [HBth]HSO4, [HBth]H2PO4, [HBth]ClO4, [HBth]NO3 were synthesized and characterized by NMR and FT-IR, which bear the proton acid groups based on low price benzothiazole as raw material. The catalytic activities of these acidic ionic liquids were investigated by the esterification of ricinoleic acid with ethanol ethylene glycol monobutyl ether (EGBE) and were compared with concentrated sulfuric acid. The results showed that under the optimized conditions: n(Ricinoleic acid):n(EGBE)=1:1.15, catalyst dosage 2% (wt) of ricinoleic acid, reaction temperature 90 ℃ and reaction time 5 h, esterification yield was up to 98.8%. The ionic liquids dried in vacuum till remained high activity after reused for 10 times. Finally, the yields of series of ricinoleic acid binary alcohol ether ester and short-chain fatty acids ester were also high with [HBth]HSO4 as catalyst, and the ionic liquids can form split-phases with ester product. Compared with the traditional sulfuric acid catalytic esterification, catalytic esterification of such ionic liquid has the advantages of low production cost, clean process, low corrosion rate, reusable, and has the potential of replacing the traditional sulfuric acid in catalytic esterification reaction of ricinoleic acid.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Doudin, K.; A-Malaika, S.; Dole, H. Polym. Degrad. Stab. 2011, 96, 438. 

    4. [4]

      Dias, J.-M.; Araujo, J.-M.; Costa, J.-F. Energy2013, 53, 58.

    5. [5]

      Amador, P.; Martinez, E.; Sanchez-Daza, O. J. Chem. Thermodyn. 2012, 50, 15. 

    6. [6]

    7. [7]

      Zhao, D.-B.; Fei, Z.-F.; Geldbach, T.-J.; Scopelliti, R.; Laurenczy, G.; Dyson, P.-J. J. Am. Chem. Soc. 2005, 88, 665.

    8. [8]

      Inui, K.; Kurabayashi, T.; Sato, S.; Ichikawa, N. J. Mol. Catal A: Chem. 2004, 216, 147. 

    9. [9]

      Amador, P.; Martinez E, Sanchez-Daza O. J. Chem. Thermodyn.2012, 50, 15.

    10. [10]

      Li, Y.; Hu, S.-L.; Cheng, J.-H.; Lou, W.-Y. Chin. J. Catal. 2014, 35, 396.

    11. [11]

    12. [12]

       

    13. [13]

      Peter, W.; Wilhelm, K. Angew. Chem., Int. Ed. 2000, 39, 3772. 

    14. [14]

      Plechkova, N.-V.; Seddon, K.-R. Chem. Soc. Rev. 2008, 370, 123.

    15. [15]

      Tokuda, H.; Tsuzuki, S.; Susan, M. A.-B. H.; Hayamizu, K.; Watanabe, M. J. Chin. Phys. Chem. B 2006, 110, 19593. 

    16. [16]

      Song, Y.-L.; Wang, X.-C.; Huang, C.-P.; Liang, F.-B.; Liu, Z.-C.; Chen, B.-H. Chin. J. Org. Chem. 2013, 33, 1715.

    17. [17]

      Jankovic, M. R.; Sinadinovic-Fiser, S. V.; Govedarica, O.-M. Ind. Eng. Chem. Res.2014, 53, 9357. 

    18. [18]

      Elsheikh, Y.-A. Energy Convers. Manage.2011, 52, 804. 

    19. [19]

      Liu, S.-W.; Li, L.; Yu, S.-T. Chin. J. Catal. 2010, 31, 1433.

    20. [20]

      Earle, M.-J.; Seddon, K.-R. Pure Appl. Chem. 2000, 72: 1391-1398.

    21. [21]

      Marsh, K.-N; Boxall, J.-A.; Lichtenthaler, R. Fluid Phase Equilib.2004, 219: 93~98.

    22. [22]

    23. [23]

    24. [24]

      Wang, Y.-Y.; Wu, Y.-T.; Liu, K.; Dai, L.-Y. Chin. Chem. Lett. 2012, 23, 1031.

    25. [25]

      Venkataraman, V-R; Ali, K.-S. Indian J. Heterocycl. Chem. 2001, 11, 93.

    26. [26]

    27. [27]

      Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772. 

    28. [28]

      Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green. Chem. 2001, 3, 156. 

    29. [29]

      Fredakle, C.-P.; Crosthwaite, J.-M.; Hert, D.-G. J. Chem. Eng. Data 2004, 49, 954. 

    30. [30]

    31. [31]

      Anthony, J. L.; Maginn, E. J.; Brennecke, J.-F. J. Phys. Chem. B2001, 105, 10942. 

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    3. [3]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(0)
  • Abstract views(809)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return