Citation: Zhang Haifei, Liu Dongmei, Kang Tingting, Wang Ye, Zhang Xiaoxiang, Zhu Xinbao. Synthesis of Novel Benzothiazolium Ionic Liquids and Research on Their Catalytic Esterification for Ricinoleic Acid[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 1104-1110. doi: 10.6023/cjoc201511019 shu

Synthesis of Novel Benzothiazolium Ionic Liquids and Research on Their Catalytic Esterification for Ricinoleic Acid

  • Corresponding author: Zhang Xiaoxiang, s070038@hotmail.com Zhu Xinbao, zhuxinbao@njfu.com.cn
  • Received Date: 12 November 2015
    Revised Date: 21 December 2015

    Fund Project: Project supported by the 948 Project Foundation of State Forestry Administration No.2015-4-55

Figures(3)

  • Four new task-specfic benzothiazolium ionic liquids (ILs) [HBth]HSO4, [HBth]H2PO4, [HBth]ClO4, [HBth]NO3 were synthesized and characterized by NMR and FT-IR, which bear the proton acid groups based on low price benzothiazole as raw material. The catalytic activities of these acidic ionic liquids were investigated by the esterification of ricinoleic acid with ethanol ethylene glycol monobutyl ether (EGBE) and were compared with concentrated sulfuric acid. The results showed that under the optimized conditions: n(Ricinoleic acid):n(EGBE)=1:1.15, catalyst dosage 2% (wt) of ricinoleic acid, reaction temperature 90 ℃ and reaction time 5 h, esterification yield was up to 98.8%. The ionic liquids dried in vacuum till remained high activity after reused for 10 times. Finally, the yields of series of ricinoleic acid binary alcohol ether ester and short-chain fatty acids ester were also high with [HBth]HSO4 as catalyst, and the ionic liquids can form split-phases with ester product. Compared with the traditional sulfuric acid catalytic esterification, catalytic esterification of such ionic liquid has the advantages of low production cost, clean process, low corrosion rate, reusable, and has the potential of replacing the traditional sulfuric acid in catalytic esterification reaction of ricinoleic acid.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Doudin, K.; A-Malaika, S.; Dole, H. Polym. Degrad. Stab. 2011, 96, 438. 

    4. [4]

      Dias, J.-M.; Araujo, J.-M.; Costa, J.-F. Energy2013, 53, 58.

    5. [5]

      Amador, P.; Martinez, E.; Sanchez-Daza, O. J. Chem. Thermodyn. 2012, 50, 15. 

    6. [6]

    7. [7]

      Zhao, D.-B.; Fei, Z.-F.; Geldbach, T.-J.; Scopelliti, R.; Laurenczy, G.; Dyson, P.-J. J. Am. Chem. Soc. 2005, 88, 665.

    8. [8]

      Inui, K.; Kurabayashi, T.; Sato, S.; Ichikawa, N. J. Mol. Catal A: Chem. 2004, 216, 147. 

    9. [9]

      Amador, P.; Martinez E, Sanchez-Daza O. J. Chem. Thermodyn.2012, 50, 15.

    10. [10]

      Li, Y.; Hu, S.-L.; Cheng, J.-H.; Lou, W.-Y. Chin. J. Catal. 2014, 35, 396.

    11. [11]

    12. [12]

       

    13. [13]

      Peter, W.; Wilhelm, K. Angew. Chem., Int. Ed. 2000, 39, 3772. 

    14. [14]

      Plechkova, N.-V.; Seddon, K.-R. Chem. Soc. Rev. 2008, 370, 123.

    15. [15]

      Tokuda, H.; Tsuzuki, S.; Susan, M. A.-B. H.; Hayamizu, K.; Watanabe, M. J. Chin. Phys. Chem. B 2006, 110, 19593. 

    16. [16]

      Song, Y.-L.; Wang, X.-C.; Huang, C.-P.; Liang, F.-B.; Liu, Z.-C.; Chen, B.-H. Chin. J. Org. Chem. 2013, 33, 1715.

    17. [17]

      Jankovic, M. R.; Sinadinovic-Fiser, S. V.; Govedarica, O.-M. Ind. Eng. Chem. Res.2014, 53, 9357. 

    18. [18]

      Elsheikh, Y.-A. Energy Convers. Manage.2011, 52, 804. 

    19. [19]

      Liu, S.-W.; Li, L.; Yu, S.-T. Chin. J. Catal. 2010, 31, 1433.

    20. [20]

      Earle, M.-J.; Seddon, K.-R. Pure Appl. Chem. 2000, 72: 1391-1398.

    21. [21]

      Marsh, K.-N; Boxall, J.-A.; Lichtenthaler, R. Fluid Phase Equilib.2004, 219: 93~98.

    22. [22]

    23. [23]

    24. [24]

      Wang, Y.-Y.; Wu, Y.-T.; Liu, K.; Dai, L.-Y. Chin. Chem. Lett. 2012, 23, 1031.

    25. [25]

      Venkataraman, V-R; Ali, K.-S. Indian J. Heterocycl. Chem. 2001, 11, 93.

    26. [26]

    27. [27]

      Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772. 

    28. [28]

      Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green. Chem. 2001, 3, 156. 

    29. [29]

      Fredakle, C.-P.; Crosthwaite, J.-M.; Hert, D.-G. J. Chem. Eng. Data 2004, 49, 954. 

    30. [30]

    31. [31]

      Anthony, J. L.; Maginn, E. J.; Brennecke, J.-F. J. Phys. Chem. B2001, 105, 10942. 

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    5. [5]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    6. [6]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    11. [11]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(0)
  • Abstract views(1008)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return