Citation: Wang Liang, Li Zhana, Wan Kang, Qu Xinga, Hu Siqian, Wang Feng. Progress in Diazo Compounds Mediated Transition-Metal-Catalyzed C—H Alkylation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 889-912. doi: 10.6023/cjoc201511017 shu

Progress in Diazo Compounds Mediated Transition-Metal-Catalyzed C—H Alkylation

  • Corresponding author: Hu Siqian, hbeukj@126.com Wang Feng, wangliang@jhun.edu.cn
  • Received Date: 6 November 2015
    Revised Date: 10 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21302064and the Scientific Research Project of Hubei Provincial Department of Education No. B2015231

Figures(31)

  • Diazo compounds had been widely employed as a class of environment friendly and highly efficient coupling reagents in transition-metal-catalyzed C—H bonds insertion reactions. Recently, C—H alkylation of various arenes and heteroarenes has been achieved enormous successes using diazo compounds as the alkylation reagents under a new catalytic model. The recent progress in diazo compounds mediated transition-metal-catalyzed C—H alkylation and tandem C—H alkylation/cyclization is reviewed, including reaction mechanism and synthetic applications. Furthermore, the prospects of this reaction are also discussed.
  • 加载中
    1. [1]

      Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030. (c) Yeung, C. S.; Dong, V. M. Chem. Rev, 2011, 111, 1215. (d) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. (e) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed.2012, 51, 10236. 

    2. [2]

       

    3. [3]

      Godula, K.; Sames, D. Science 2006, 312, 67. (b) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (c) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (d) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518. (e) Tang, R.-Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.

    4. [4]

      Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (b) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (e) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (f) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. 

    5. [5]

    6. [6]

      Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634. (b) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am.Chem. Soc 2008, 130, 7190. 

    7. [7]

      Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.2006, 128, 78. 

    8. [8]

      Ackermann, L. Chem. Commun. 2010, 46, 4866.

    9. [9]

      Lee, D.-H.; Kwon, K.-H.; Yi, C.-S. Science 2011, 333, 1613.

    10. [10]

      Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (b) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 2115. 

    11. [11]

       

    12. [12]

      Pan, S.; Shibata, T. ACS Catal. 2013, 3, 704.

    13. [13]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577. (c) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Chem. Commun. 2015, 51, 7986. (d) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236. 

    14. [14]

       

    15. [15]

      Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc.2012, 134, 13565.

    16. [16]

      Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. J. Org. Chem. 2013, 78, 5444. 

    17. [17]

      Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888. 

    18. [18]

      Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. 

    19. [19]

      Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed.2014, 53, 1364. 

    20. [20]

      Cacchi, S.; Fabrizi, G. Chem.Rev.2005, 105, 2873.

    21. [21]

      Shi, J.; Yan, Y.; Li, Q.; Xu, H. E.; Yi, W. Chem.Commun. 2014, 50, 6483.

    22. [22]

      Kimyonok, A.; Wang, X. Y.; Weck, M. Polym. Rev.2006, 46, 47. (b) Yan, G.; Borah, A. J.; Yang, M. Adv. Synth. Catal. 2014, 356, 2375.

    23. [23]

       

    24. [24]

      Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Org. Lett.2014, 16, 4598.

    25. [25]

      Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003. (b) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc.2010, 132, 8909.

    26. [26]

      Song, Z.; Samanta, R.; Antonchick, A. P. Org. Lett.2013, 15, 5662. 

    27. [27]

      Ai, W.; Yang, X.; Wu, Y.; Wang, X.; Li, Y.; Yang, Y.; Zhou, B. Chem. Eur. J. 2014, 20, 17653. 

    28. [28]

      Xia, Y.; Liu, Z.; Feng, S.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 223. 

    29. [29]

      Zhou, J.; Shi, J.; Liu, X.; Jia, J.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun.2015, 51, 5868.

    30. [30]

    31. [31]

      Iagafarova, I. E.; Vorobyeva, D. V.; Peregudov, A. S.; Osipov, S. N. Eur. J. Org. Chem. 2015, 4950.

    32. [32]

      Liu, X.-G.; Zhang, S.-S.; Wu, J.-Q.; Li, Q.; Wang, H. Tetrahedron Lett. 2015, 56, 4093.

    33. [33]

      Li, H.; Li, P.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 9170. (b) Li, H.; Xi, X.; Wang, L. Chem. Commun.2014, 50, 4218. (c) Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. J. Am. Chem. Soc.2013, 135, 7122.

    34. [34]

      Sharma, S.; Han, S. H.; Han, S.; Ji, W.; Oh, J.; Lee, S.-Y.; Oh, J. S.; Jung, Y. H.; Kim, I. S. Org. Lett. 2015, 17, 2852. 

    35. [35]

      Zhou, J.; He, J.; Wang, B.; Yang, W.; Ren, H. J. Am. Chem. Soc. 2011, 133, 6868. (b) Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2012, 51, 7242. (c) Wang, C.; Sun, H.; Fang, Y.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 5795. 

    36. [36]

      Wang, D.; Cui, S. Tetrahedron 2016, 72, 2725. 

    37. [37]

      Zhang, S.-S.; Jiang, C.-Y.; Wu, J.-Q.; Liu, X.-G.; Li, Q.; Huang, Z.-S.; Li, D.; Wang, H. Chem. Commun. 2015, 51, 10240.

    38. [38]

      Choi, M.; Park, J.; Mishra, N. K.; Lee, S.-Y.; Kim, J. H.; Jeong, K. M.; Lee, J.; Jung, Y. H.; Kim, I. S. Tetrahedron Lett. 2015, 56, 4678. 

    39. [39]

      Wang, L.; Li, Z.; Qu, X.; Peng, W.-M.; Hu, S.-Q.; Wang, H.-B. Tetrahedron Lett.2015, 56, 6214.

    40. [40]

      Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc.2013, 135, 5364. 

    41. [41]

      Lam, H.-W.; Man, K.-Y.; Chan, W.-W.; Zhou, Z.; Yu, W.-Y. Org. Biomol. Chem. 2014, 12, 4112.

    42. [42]

      Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12426. 

    43. [43]

      Liang, Y.; Yu, K.; Li, B.; Xu, S.; Song, H.; Wang, B. Chem. Commun. 2014, 50, 6130.

    44. [44]

      Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Science 2014, 346, 451. (c) Shibata, T.; Shizuno, T. Angew. Chem., Int. Ed. 2014, 53, 5410.

    45. [45]

      Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 7896. 

    46. [46]

       

    47. [47]

      Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490. 

    48. [48]

      Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2015, 17, 2494.

    49. [49]

      Zhou, B.; Chen, Z.; Yang, Y.; Ai, W.; Tang, H.; Wu, Y.; Zhu, W.; Li, Y. Angew. Chem., Int. Ed. 2015, 54, 12121. 

    50. [50]

      Yang, Y.; Wang, X.; Li, Y.; Zhou, B. Angew. Chem., Int. Ed. 2015, 54, 15400. 

    51. [51]

       

    52. [52]

      Shi, Z.; Koester, D. C. Boultadakis-Arapinis, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 12204. 

    53. [53]

      Shi, J.; Zhou, J.; Yan, Y.; Jia, J.; Liu, X.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 668.

    54. [54]

      Li, X. G.; Sun, M.; Liu, K.; Jin, Q.; Liu, P. N. Chem. Commun. 2015, 51, 2380. 

    55. [55]

      Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 4508 

    56. [56]

      Cheng, Y.; Bolm, C. Angew. Chem., Int. Ed.2015, 54, 12349. 

    57. [57]

      Son, J.-Y.; Kim, S.; Jeon, W. H.; Lee, P. Org. Lett. 2015, 17, 2518.

    58. [58]

      Wu, J.-Q.; Yang, Z.; Zhang, S.-S.; Jiang, C.-Y.; Li, Q.; Huang, Z.-S.; Wang, H. ACS Catal. 2015, 5, 6453.

    59. [59]

      Cui, S.; Zhang, Y.; Wang, D.; Wu, Q. Chem. Sci. 2013, 4, 3912.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(0)
  • Abstract views(2155)
  • HTML views(608)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return