Citation: Li Changwei, Yang Dong, Yin Bing, Guo Yuan. Novel Coumarin-Based Fluorescent Probes for Detecting Zn2+ in Living Cells[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 787-794. doi: 10.6023/cjoc201511016 shu

Novel Coumarin-Based Fluorescent Probes for Detecting Zn2+ in Living Cells

  • Corresponding author: Guo Yuan, 
  • Received Date: 10 November 2015
    Available Online: 8 December 2015

    Fund Project: 国家自然科学基金(Nos.21472148,21072158) (Nos.21472148,21072158)陕西省教育厅专项基金(No.12JK0580) (No.12JK0580)

  • Zinc ion (Zn2+) is one of the most important transition-metal ions in the human body which is involved in many important life activities and many diseases can be displayed by its situation. Thus, monitoring of Zn2+ is very meaningful to diagnosis of diseases. Compared to the traditional detection methods, fluorescence probe is safer and more practical. Because coumarin derivatives possess several advantages in optics, we choose them as key structures to prepare new fluorescent probes. Based on the mechaism of photoinduced electron transfer (PET), the water-soluble fluorescent probes 1 and 2that are coumarin-based derivatives were designed, which demonstrated sensitivity for Zn2+ and exhibited high selectivity to Zn2+ over other metal ions. The receptor unit serves as an electron donor in the absence of Zn2+, quenching the fluorophore excited state that makes the probe have no fluorescence. However, when Zn2+ binds to the receptor, photoinduced electron transfer is prevented and the quenching is blocked, resulting the fluorescence intensity significantly enhanced. There is a good correlation between fluorescence intensity and Zn2+ concentration. With the increase of Zn2+ concentration, fluorescence intensity becomes stronger. Furthermore, the two probes were successfully labelled on the MCF-7 cell and B. subtilis. The single crystals of the coumarin-based compounds 1~4 and zinc complex [Zn(2)] were also obtained. The X-ray crystal structure of the zinc complex [Zn(2)] reveals that the hydroxyl group and the 2,2-dipicolylaminomethyl group participate in coordination. Zn2+ is five-coordinated with three nitrogen atoms from the pyridine rings, the substituted amino group and two oxygen atoms from the 7-site hydroxyl group, also coordinated with water molecule forming a pentacoordinated bipyramid geometry.
  • 加载中
    1. [1]

      [1] Xu, Z. C.; Yoon, J.; Spring, D. R. Chem. Soc. Rev. 2010, 39, 1996.

    2. [2]

      [2] Prasad, A. S., Biochemistry of Zinc, Plenum Press, New York, 1993.

    3. [3]

      [3] Geiser, J.; Venken, K. J. T.; De Lisle, R. C.; Andrews, G. K. PLoS Genet. 2012, 8, e1002766.

    4. [4]

      [4] Thambiayya, K.; Wasserloos, K.; Kagan, V. E.; Stoyanovsky, D.; Pitt, B. R. Am. J. Physiol. 2012, 302, 1351.

    5. [5]

      [5] Maret, W.; Jacob, C.; Vallee, B. L.; Fischer, E. H. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1936.

    6. [6]

      [6] (a)Nikseresht, S.; Etebary, S.; Karimian, M.; Nabavizadeh, F.; Zarrindast, M. R.; Sadeghipour, H. R. Arch. Iran. Med. 2012, 15, 306.

    7. [7]

      (b) Morris, D. R.; Levenson, C. W. J. Toxicol. 2012, 785647.

    8. [8]

      [7] Fraustoda Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements,Oxford University Press, Oxford, 1991, p. 561.

    9. [9]

      [8] Fischer Walker, C. L.; Lamberti, L.; Roth, D.; Black, R. E. Biomed. Health Res. 2011, 76, 234.

    10. [10]

      [9] Grabrucker, A. M.; Rowan, M.; Garner, C. C. Drug Delivery Lett. 2011, 1, 13.

    11. [11]

      [10] Gower-Winter, S. D.; Levenson, C. W. BioFactors 2012, 38, 186.

    12. [12]

      [11] Bicer, M.; Gunay, M.; Baltaci, A. K.; Uney, K.; Mogulkoc, R.; Akil, M. Br. Med. J. 2012, 113, 199.

    13. [13]

      [12] Chen, X.; Yu, H. N.; Shen, S. R.; Yin, J. J. J. Trace Elem. Med. Biol. 2007, 21, 125.

    14. [14]

      [13] (a) Srichaikul, B. Adv. Nat. Sci. 2012, 5, 1.

    15. [15]

      (b) Lee, J. Y.; Cho, E.; Seo, J. W.; Hwang, J. J.; Koh, J. Y. J. Neuropath. Exp. Neur. 2012, 71, 211.

    16. [16]

      [14] (a) Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K. Spectrochim. Acta, Part A 2012, 95, 143.

    17. [17]

      (b) Liu, Z. P.; Zhang, C. L.; Chen, Y. C.; He, W. J.; Guo, Z. J. Chem. Commun. 2012, 48, 8365.

    18. [18]

      (c) Mandal, A. K.; He, T. C.; Maji, S. K.; Sun, H. D.; Zhao, Y. L. Chem. Commun. 2014, 50, 14378.

    19. [19]

      (d) Tang, L. J.; Zheng, Z. X.; Bian, Y. J. Chem. Online 2015, 78, 388 (in Chinese). (汤立军, 郑竹轩, 边延江, 化学通报, 2015, 78, 388.)

    20. [20]

      [15] (a) Tsien, R. W.; Tsien, R. Y. Rev. Cell Biol. 1990, 6, 715.

    21. [21]

      (b) Jitendra, B.; Umesh, F.; Banashree, B.; Simanpreet, K.; Narin- der, S.; Anupam, B.; Rajesh, D.; Ratnamala, B.; Anil, K. J. Mol. Recognit. 2015, 28, 369.

    22. [22]

      (c) Liu, M.; Tan, H. L.; Liu, Z. G.; Wang, W.; Zeng, W. B. Chin. J. Org. Chem. 2013, 33, 1655 (in Chinese). (刘敏, 谭慧龙, 刘治国, 王维, 曾文彬, 有机化学, 2013, 33, 1655.)

    23. [23]

      [16] (a) Priya, C.; Sivaramapanicker, S.; Ayyappanpillai, A. Chem. Asian J. 2007, 2, 338.

    24. [24]

      (b) Nolan, E. M.; Lippard, S. J. Acc. Chem. Res. 2009, 42, 193.

    25. [25]

      (c) Wong, B. A.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7142.

    26. [26]

      (d) Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y. J. Am. Chem. Soc. 2000, 122, 5644.

    27. [27]

      (e) Mizukami, S.; Okada, S.; Kimura, S.; Kikuchi, K. Inorg. Chem. 2009, 48, 7630.

    28. [28]

      (f) Song, Z. K.; Dong, B.; Lei, G. J.; Peng, M. J.; Guo, Y. Tetrahedron Lett. 2013, 54, 4945.

    29. [29]

      [17] (a) Domaille, D. W.; Zeng, L.; Chang, C. J. J. Am. Chem. Soc. 2010, 132, 1194.

    30. [30]

      (b) Yang, Z.; She, M. Y.; Yin, B.; Hao, L. K.; Obst, M.; Liu, P.; Li, J. L. Anal. Chim. Acta 2015, 868, 53.

    31. [31]

      (c) Fan, J. L.; Xu, Q. L.; Zhu, H.; Peng, X. J. Chin. J. Org. Chem. 2014, 34, 1623 (in Chinese). (樊江莉, 徐群利, 朱浩, 彭孝军, 有机化学, 2014, 34, 1623.)

    32. [32]

      [18] (a) Yuan, L.; Lin, W. Y.; Yang, Y. T.; Song, J. Z.; Wang, J. L. Org. Lett. 2011, 13, 3730.

    33. [33]

      (b) Jung, H. S.; Han, J. H.; Kim, Z. H.; Kang, C. H.; Kim, J. S. Org. Lett. 2011, 13, 5056.

    34. [34]

      (c) Perry, C. C.; Tang, V. J.; Konigsfeld, K. M.; Aguilera, J. A.; Milligan, J. R. J. Phys. Chem. B 2011, 115, 9889.

    35. [35]

      (d) Huo, F. J.; Sun, Y. Q.; Su, J.; Chao, J. B.; Zhi, H. J.; Yin, C. X. Org. Lett. 2009, 11, 4918.

    36. [36]

      (e) Peng, M. J.; Yang, X. F; Yin, B; Guo, Y.; Suzenet, F.; En, D.; Li, J.; Li, C. W.; Duan, Y. W. Chem. Asian J. 2014, 9, 1817.

    37. [37]

      [19] (a) Ciesienski, K. L.; Hyman, L. M.; Derisavifard, S.; Franz, K. J. Inorg. Chem. 2010, 49, 6808.

    38. [38]

      (b) Park, J. E.; Choi, M. G.; Chang, S. K. Inorg. Chem. 2012, 51, 2880.

    39. [39]

      (c) Ezeh, V. C.; Harrop, T. C. Inorg. Chem. 2012, 51, 1213.

    40. [40]

      (d) En, D.; Guo, Y.; Chen, B. T.; Dong, B.; Peng, M. J. RSC Adv. 2014, 4, 248.

    41. [41]

      (e) Hong, T.; Song, H. L.; Li, X.; Zhang, W. B.; Xie, Y. S. RSC Adv. 2014, 4, 6133.

    42. [42]

      [20] (a) Wu, J. S.; Sheng, R. L.; Liu, W. M.; Wang, P. F.; Ma, J. J.; Zhang, H. Y.; Zhuang, X. Q. Inorg. Chem. 2011, 50, 6543.

    43. [43]

      (b) Yuan, L.; Lin, W. Y.; Xie, Y. N.; Chen, B.; Zhu, S. J. Am. Chem. Soc. 2012, 134, 1305.

    44. [44]

      (c) Zhou, Y.; Liu, K.; Li, J. Y.; Fang, Y.; Zhao, T. C.; Yao, C. Org. Lett. 2011, 13, 1290.

    45. [45]

      (d) Choi, M. G.; Hwang, J. Y.; Moon, J. O.; Sung, J. Y.; Chang, S. K. Org. Lett. 2011, 13, 5260.

    46. [46]

      (e) Reddie, K. G.; Humphries, W. H.; Bain, C. P.; Payne, C. K.; Kemp, M. L.; Murthy, N. Org. Lett. 2012, 14, 680.

    47. [47]

      [21] (a) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997.

    48. [48]

      (b) Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.

    49. [49]

      (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    50. [50]

      (d) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    7. [7]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    13. [13]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    14. [14]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    18. [18]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(941)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return