Citation: Xie Yangxi, Li Fangyi, Zhao Changgui, Wang Jian. N-Heterocyclic Carbene Catalyzed and N-Fluorobenzenesulfonimide Mediated Oxidative Synthesis of Perester and Amide[J]. Chinese Journal of Organic Chemistry, ;2015, 36(1): 105-112. doi: 10.6023/cjoc201511013 shu

N-Heterocyclic Carbene Catalyzed and N-Fluorobenzenesulfonimide Mediated Oxidative Synthesis of Perester and Amide

  • Corresponding author: Wang Jian, wangjian2012@tsinghua.edu.cn
  • Received Date: 7 November 2015
    Revised Date: 24 November 2015

    Fund Project:

Figures(2)

  • The first study of oxidative synthesis of simple tert-butyl peresters and amides enabled by N-heterocyclic carbene-catalysis using N-fluorobenzenesulfonimide (NFSI) as oxidant is described. The reaction proceeds with green, high yield, board substrate scope and room temperature.
  • 加载中
    1. [1]

      Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
      (b) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314.
      (c) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
      (d) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686.
      (e) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906.
      (f) DeSarkar, S.; Biswap, A.; Samanta, R. C.; Studer, A. Chem. Eur. J. 2013, 19, 4664.
      (g) Chauhan, P.; Enders, D. Angew. Chem., Int. Ed. 2014, 53, 1485.
      (h) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
      (i) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev.2015, 115, 9307.
      (j) Chai, H. X.; Li, J. R.; Ynag, L. P.; Liu, M. X.; Yang, D. L.; Shi, D. X. Chin. J. Chem. 2014, 32, 865.
      (k) Shen, L. T.; Jia, W. Q.; Ye, S. Chin. J. Chem. 2014, 32, 814.
      (l) He, L.; Cai, Z. H.; Ma, X. W.; Du, G. F. Chin. J. Chem.2013, 31, 1573.
      (m) Qu, M. N.; He, J. M. Chin. J. Org. Chem.2011, 31, 1388.
      (n) He, L.; Cai, Z. H.; Ma, X. W.; Du, G. F. Chin. J. Chem. 2013, 31, 1573.

    2. [2]

      Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176.
      (b) Hao, L.; Du, Y.; Lv, H.; Chen, X. K.; Jiang, H. S.; Shao, Y. L.; Chi, Y. R. Org. Lett. 2012, 14, 2154.
      (c) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592.
      (d) Lee, A.; Younai, Y.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 10589.
      (e) Chen, X. Y.; Gao, Z. H.; Song, C. Y.; Zhang, C. L.; Wang, Z. X.; Ye, S. Angew. Chem., Int. Ed. 2014, 53, 11611.
      (f) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905.
      (g) Zeitler, K. Org. Let. 2006, 8, 637.
      (h) Reynolds, N. T.; Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518.
      (i) Sun, F. G.; Sun, L. H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134.
      (j) Yetra, S. R.; Bhunia, A.; Patra, A.; Mane, M. V.; Vanka, K.; Biju, A. T. Adv. Synth. Catal. 2013, 355, 1089.
      (k) Yetra, S. R.; Kaicharla, T.; Kunte, S. S.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2013, 15, 5202.
      (l) Yao, C.; Wang, D.; Lu, J.; Li, T.; Jiao, W.; Yu, C. Chem. Eur. J. 2012, 18, 1914.
      (m) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371.
      (n) Maki, B. E.; Chan, A.; Scheidt, K. A. Synthesis 2008, 1306.
      (o) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J. W. J. Am. Chem. Soc. 2010, 132, 8810.
      (p) Mahatthananchai, J.; Zheng, P.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 1673.
      (q) Mahatthananchai, J.; Kaeobamrung, J.; Bode, J. W. ACS Catal. 2012, 2, 494.
      (r) Zhu, Z. Q.; Zheng, X. L.; Jiang, N. F.; Wan, X.; Xiao, J. C. Chem. Commun. 2011, 47, 8670.
      (s) Zhu, Z. Q.; Xiao, J. C. Adv. Synth. Catal. 2010, 352, 2455.
      (t) De Sarkar, S.; Studer, A. Angew. Chem., Int. Ed. 2010, 49, 9266.
      (u) Rong, Z. Q.; Jia, M. Q.; You, S. L. Org. Lett. 2011, 13, 4080.
      (v) Wanner, B.; Mahatthananchai, J.; Bode, J. W. Org. Lett. 2011, 13, 5378.
      (w) Kravina, A. G.; Mahatthananchai, J.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 9433.
      (x) De Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190.
      (y) Maji, B.; Vedachalan, S.; Ge, X.; Cai, S.; Liu, X. W. J. Org. Chem. 2011, 76, 3016.
      (z) Corey, E. J.; Katzenellenbogen, J. A.; Gilman, N. W.; Roman, S. A.; Erickson, B. W. J. Am. Chem. Soc. 1968, 90, 5618.

    3. [3]

      Wu, Z. J.; Li, F. Y.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 1629.
      (b) Goodman, C. G.; Walker, M. M.; Johnson, J. S. J. Am. Chem. Soc. 2015, 137, 122.

    4. [4]

      Li, F. Y.; Wu, Z. J.; Wang, J. Angew. Chem. Int. Ed. 2015, 54, 656.

    5. [5]

      Denisov, E. T.; Denisova, T. G.; Pokidova, T. S., Handbook of Free Radical Initiators, Wiley-Interscience, New Jersey, 2003.
      (b) Gupta, S. N.; Gupta, I.; Neckers, D. C. J. Polym. Sci., Polym. Chem. Ed. 1981, 19, 103.
      (c) Wang, L.; Liu, X.; Li, Y. Macromolecules 1998, 31, 3446.
      (d) Ando, W. Organic Peroxides, Wiley-Interscience, New York, 1992.

    6. [6]

      Montevecchi, P. C.; Manetto, A.; Navacchia, M. L.; Chatgilialoglu, C. Tetrahedron 2004, 60, 4303.
      (b) Antonello, S.; Crisma, M.; Formaggio, F.; Moretto, A.; Taddei, F.; Toniolo, C.; Maran, F. J. Am. Chem. Soc. 2002, 124, 11503.
      (c) Shah, B. K.; Neckers, D. C. J. Am. Chem. Soc. 2004, 126, 1830.
      (d) Andrus, M. B.; Zhou, Z. J. Am. Chem. Soc. 2002, 124, 8806.
      (e) Eames, J.; Watkinson, M. Angew. Chem., Int. Ed. 2001, 40, 3567.
      (f) Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726;
      (g) Formaggio, F.; Crisma, M.; Scipionato, L.; Antonello, S.; Maran, F.; Toniolo, C. Org. Lett. 2004, 6, 2753.
      (h) Malkov, A. V.; Bella, M.; Langer, V.; Kocovsky, P. Org. Lett. 2000, 2, 3047.
      (i) Andrus, M. B.; Lashley, J. C. Tetrahedron 2002, 58, 845.
      (j) Kohmura, Y.; Katsuki, T. Tetrahedron Lett. 2000, 41, 3941.
      (k) Rispens, M. T.; Zondercu, C.; Feringa, B. L. Tetrahedron: Asymmetry 1995, 6, 661.

    7. [7]

      De Sarkar, S.; Studer, A. Org. Lett. 2010, 12, 1992.  doi: 10.1021/ol1004643

    8. [8]

      Wei, W.; Zhang, C.; Xu, Y.; Wan, X. B. Chem. Commun. 2011, 47, 10827.  doi: 10.1039/c1cc14602e

    9. [9]

      Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666.
      (b)Ren, W.; Yamane, M. J. Org. Chem. 2010, 75, 8410.
      (c) Ojeda-Porras, A.; Hernández-Santana, A.; Gamba-Sánchez, D. Green Chem. 2015, 17, 3157.
      (d) Pilo, M.; Porcheddu, A.; De Luca, L. Org. Biomol. Chem.2013, 11, 8241.
      (e) Rushworth, P. J.; Hulcoop, D. G.; Fox, D. J. J. Org. Chem. 2013, 78, 9517.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    6. [6]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    9. [9]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    10. [10]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    13. [13]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    16. [16]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

Metrics
  • PDF Downloads(0)
  • Abstract views(1505)
  • HTML views(286)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return