Citation: Li He, Long Yaqiu. Advances in Small-Molecule GPR40 Agonists for Treatment of Type 2 Diabetes Mellitus[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 736-743. doi: 10.6023/cjoc201511011 shu

Advances in Small-Molecule GPR40 Agonists for Treatment of Type 2 Diabetes Mellitus

  • Corresponding author: Long Yaqiu, 
  • Received Date: 5 November 2015
    Available Online: 25 November 2015

    Fund Project: 国家自然科学基金(Nos.81325020,81361120410,81321092,81123004)资助项目. (Nos.81325020,81361120410,81321092,81123004)

  • Currently, the majority of the chemotherapy for type 2 diabetes mellitus (T2DM) functions through glycemic control by administration of oral or injectable hypoglycemic drugs. Though a range of anti-diabetic drugs with different modes of action have been launched, there still remains a significant need for development of effective and highly safe anti-diabetic agents for the increasing diabetic population. GPR40 belongs to the GPCR family and the activation of GPR40 can amplify glucose-stimulated insulin secretion (GSIS). Due to the advantage of minimizing the hypoglycemia risk, GPR40 has drawn more and more attention and emerged as a promising new target for T2DM treatment. Therefore, the recent progress on the structural optimization and further development of small molecule GPR40 agonists as novel treatment for T2DM is reviewed, focused on those under clinical trials or at preclinical stage. A variety of small molecule GPR40 agonists were summarized from the literature and patents based on the pharmacophore model, including the critical phenylpropanoic acid core, the hydrophobic terminus and the linker. The structural features and advantage of different sources of GPR40 agonists were analyzed and highlighted.
  • 加载中
    1. [1]

      [1] http://www.idf.org/diabetesatlas/update-2014

    2. [2]

      [2] Ahren, B. Nat. Rev. Drug Discovery 2009, 8, 369.

    3. [3]

      [3] Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinobara, T.; Hinuma, S.; Fujisawa, Y.; Fujino, M. Nature 2003, 422, 173.

    4. [4]

      [4] Edfalk, S.; Steneberg, P.; Edlund, H. Diabetes 2008, 57, 2280.

    5. [5]

      [5] Nakamoto, K.; Nishinaka, T.; Matsumoto, K.; Kasuya, F.; Mankura, M.; Koyama, Y.; Tokuyama, S. Brain Res. 2012, 1432, 74.

    6. [6]

      [6] Hauge, M.; Vestmar, M. A.; Husted, A. S.; Ekberg, J. P.; Wright, M. J.; Di Salvo, J.; Weinglass, A. B.; Engelstoft, M. S.; Madsen, A. N.; Luckmann, M.; Miller, M. W.; Trujillo, M. E.; Frimurer, T. M.; Holst, B.; Howard, A. D.; Schwartz, T. W. Mol. Metabolism 2015, 4, 3.

    7. [7]

      [7] Sasaki, S.; Kitamura, S.; Negoro, N.; Suzuki, M.; Tsujihata, Y.; Suzuki, N.; Santou, T.; Kanzaki, N.; Harada, M.; Tanaka, Y.; Kobayashi, M.; Tada, N.; Funami, M.; Tanaka, T.; Yamamoto, Y.; Fukatsu, K.; Yasuma, T.; Momose, Y. J. Med. Chem. 2011, 54, 1365.

    8. [8]

      [8] Negoro, N.; Sasaki, S.; Ito, M.; Kitamura, S.; Tsujihata, Y.; Ito, R.; Suzuki, M.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.; Tanaka, T.; Yasuma, T.; Momose, Y. J. Med. Chem. 2012, 55, 1538.

    9. [9]

      [9] Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Suzuki, M.; Tsujihata, Y.; Ito, R.; Harada, A.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.; Tanaka, T.; Kogame, A.; Matsunaga, S.; Yasuma, T.; Momose, Y. ACS Med Chem. Lett. 2010, 1, 290.

    10. [10]

      [10] Burant, C. F. Diabetes Care 2013, 36, 175.

    11. [11]

      [11] http://www.takeda.com/news/2013/20131227_6117.html

    12. [12]

      [12] Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz, F.; Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.; Jennings, A.; Okada, K. Nature 2014, 513, 124.

    13. [13]

      [13] Houze, J. B.; Zhu, L. S.; Sun, Y.; Akerman, M.; Qiu, W.; Zhang, A. J.; Sharma, R.; Schmitt, M.; Wang, Y. C.; Liu, J. W.; Liu, J. I. A.; Medina, J. C.; Reagan, J. D.; Luo, J.; Tonn, G.; Zhang, J.; Lu, J. Y. L.; Chen, M.; Lopez, E.; Nguyen, K.; Yang, L.; Tang, L.; Tian, H.; Shuttleworth, S. J.; Lin, D. C. H. Bioorg. Med. Chem. Lett. 2012, 22, 1267.

    14. [14]

      [14] Luo, J.; Swaminath, G.; Brown, S. P.; Zhang, J.; Guo, Q.; Chen, M.; Nguyen, K.; Tran, T.; Miao, L.; Dransfield, P. J.; Vimolratana, M.; Houze, J. B.; Wong, S.; Toteva, M.; Shan, B.; Li, F.; Zhuang, R.; Lin, D. C. H. PLOS One 2012, 7, 46300.

    15. [15]

      [15] Liu, J. W.; Wang, Y. C.; Ma, Z. H.; Schmitt, M.; Zhu, L. S.; Brown, S. P.; Dransfield, P. J.; Sun, Y.; Sharma, R.; Guo, Q.; Zhuang, R.; Zhang, J.; Luo, J.; Tonn, G. R.; Wong, S.; Swaminath, G.; Medina, J. C.; Lin, D. C. H.; Houze, J. B. ACS Med. Chem. Lett. 2014, 5, 517.

    16. [16]

      [16] Brown, S. P.; Dransfield, P. J.; Vimolratana, M.; Jiao, X. Y.; Zhu, L.; Pattaropong, V.; Sun, Y.; Liu, J. Q.; Luo, J.; Zhang, J.; Wong, S.; Zhuang, R.; Guo, Q.; Li, F.; Medina, J. C.; Swaminath, G.; Lin, D. C. H.; Houze, J. B. ACS Med. Chem. Lett. 2012, 3, 726.

    17. [17]

      [17] Wang, Y. C.; Liu, J. W.; Dransfield, P. J.; Zhu, L. S.; Wang, Z. Y.; Du, X. H.; Jiao, X. Y.; Su, Y. L.; Li, A. R.; Brown, S. P.; Kasparian, A.; Vimolratana, M.; Yu, M.; Pattaropong, V.; Houze, J. B.; Swaminath, G.; Tran, T.; Nguyen, K.; Guo, Q.; Zhang, J.; Zhuang, R.; Li, F.; Miao, L.; Bartberger, M. D.; Correll, T. L.; Chow, D.; Wong, S.; Luo, J.; Lin, D. C. H.; Medina, J. C. ACS Med. Chem. Lett. 2013, 4, 551.

    18. [18]

      [18] https://clinicaltrials.gov/show/NCT01874366

    19. [19]

      [19] Kumar, S.; Sharma, R.; Mahajan, V. A.; Sawargave, S. P. WO 2013128378, 2013 [Chem. Abstr. 2013, 159, 455418].

    20. [20]

      [20] Ellsworth, B. A.; Ewing, W. R.; Jurica, E. US 0082165, 2011 [Chem. Abstr.2011, 154, 434695].

    21. [21]

      [21] Hernandez, A. S.; Ellsworth, B. A.; Ewing, W. R.; Chen, B. WO 2014078608, 2014 [Chem. Abstr. 2014, 160, 740116].

    22. [22]

      [22] Abdel-Magid, A. F. ACS Med. Chem. Lett. 2014, 5, 954.

    23. [23]

      [23] Lu, H. J.; Fei, H. B.; Yang, F. L.; Zheng, S. X.; Hu, Q. Y.; Zhang, L.; Yuan, J. J.; Feng, J.; Sun, P. Y.; Dong, Q. Bioorg. Med. Chem. Lett. 2013, 23, 2920.

    24. [24]

      [24] Christiansen, E.; Urban, C.; Merten, N.; Liebscher, K.; Karlsen, K. K.; Hamacher, A.; Spinrath, A.; Bond, A. D.; Drewke, C.; Ullrich, S.; Kassack, M. U.; Kostenis, E.; Ulven, T. J. Med. Chem. 2008, 51, 7061.

    25. [25]

      [25] (a) Christiansen, E.; Urban, C.; Grundmann, M.; Due-Hansen, M. E.; Hagesaether, E.; Schmidt, J.; Pardo, L.; Ullrich, S.; Kostenis, E.; Kassack, M.; Ulven, T. J. Med. Chem.2011, 54, 6691.

    26. [26]

      (b) Christiansen, E.; Due-Hansen, M. E.; Urban, C.; Grundmann, M.; Schmidt, J.; Hansen, S. V. F.; Hudson, B. D.; Zaibi, M.; Markussen, S. B.; Hagesaether, E.; Milligan, G.; Cawthorne, M. A.; Kostenis, E.; Kassack, M. U.; Ulven, T. J. Med. Chem. 2013, 56, 982.

    27. [27]

      [26] Christiansen, E.; Hansen, S. V. F.; Urban, C.; Hudson, B. D.; Wargent, E. T.; Grundmann, M.; Jenkins, L.; Zaibi, M.; Stocker, C. J.; Ullrich, S.; Kostenis, E.; Kassack, M. U.; Milligan, G.; Cawthorne, M. A.; Ulven, T. ACS Med. Chem. Lett. 2013, 4, 441.

    28. [28]

      [27] Takano, R.; Yoshida, M.; Inoue, M.; Honda, T.; Nakashima, R.; Matsumoto, K.; Yano, T.; Ogata, T.; Watanabe, N.; Toda, N. Bioorg. Med. Chem. Lett. 2014, 24, 2949.

    29. [29]

      [28] Takano, R.; Yoshida, M.; Inoue, M.; Honda, T.; Nakashima, R.; Matsumoto, K.; Yano, T.; Ogata, T.; Watanabe, N.; Hirouchi, M.; Yoneyama, T.; Ito, S.; Toda, N. ACS Med. Chem. Lett. 2015, 6, 266.

    30. [30]

      [29] Defossa, E.; Goerlitzer, J.; Klabunde, T.; Drosou, V.; Stengelin, S.; Haschke, G.; Herling, A.; Bartoschek, S. WO 2007131619, 2007 [Chem. Abstr. 2007, 148, 11254].

    31. [31]

      [30] Defossa, E.; Follmann, M.; Klabunde, T.; Drosou, V.; Hessler, G.; Stengelin, S.; Haschke, G.; Herling, A.; Bartoschek, S. WO 2007131622, 2007 [Chem. Abstr. 2007, 147, 541859].

    32. [32]

      [31] (a) Kell, S.; Deffossa, E.; Dietrich, V.; Stengelin, S.; Herling, A.; Haschke, G.; Klabunde, T. US 20120004166, 2012 [Chem. Abstr. 2012, 156, 122146].

    33. [33]

      (b) Kell, S.; Deffossa, E.; Dietrich, V.; Stengelin, S.; Herling, A.; Haschke, G.; Klabunde, T. US 20120004187, 2012 [Chem. Abstr. 2012, 156, 122147].

    34. [34]

      [32] Deffossa, E.; Dietrich, V.; Klabunde, T.; Kell, S.; Stengelin, S.; Haschke, G.; Herling, A.; Kuhlmann-Gottke, J.; Bartoschek, S.; Gessler, S.; Dudda, A.; Billen, G.; Ollp, T.; Rieke-Zapp, J. US 20130172248, 2013 [Chem. Abstr. 2013, 159, 181654 ].

    35. [35]

      [33] Defossa, E.; Wagner, M. Bioorg. Med. Chem. Lett. 2014, 24, 2991.

    36. [36]

      [34] Zhou, C. Y.; Tang, C.; Chang, E.; Ge, M.; Lin, S. N.; Cline, E.; Tan, C. P.; Feng, Y.; Zhou, Y. P.; Eiermann, G. J.; Petrov, A.; Salituro, G.; Meinke, P.; Mosley, R.; Akiyama, T. E.; Einstein, M.; Kumar, S.; Berger, J.; Howard, A. D.; Thornberry, N.; Mills, S. G.; Yang, L. H. Bioorg. Med. Chem. Lett. 2010, 20, 1298.

    37. [37]

      [35] Walsh, S. P.; Severino, A.; Zhou, C. Y.; He, J. F.; Liang, G. B.; Tan, C. P.; Cao, J.; Eiermann, G. J.; Xu, L.; Salituro, G.; Howard, A. D.; Mills, S. G.; Yang, L. H. Bioorg. Med. Chem. Lett. 2011, 21, 3390.

    38. [38]

      [36] Brockunier, L. L.; Chen, H.; Chobanian, H. R.; Clements, M. J.; Crespo, A.; Demong, D. E.; Guo, Y.; Hagmann, W. K.; Marcantonio, K. M.; Miller, M.; Pio, B.; Plummer, C. W.; Xiao, D. WO 2014130608, 2014 [Chem. Abstr. 2014, 161, 419304].

    39. [39]

      [37] Shimada, T.; Ueno, H.; Tsutsumi, K.; Aoyagi, K.; Manabe, T.; Sasaki, S.; Katoh, S. WO 2009054479, 2009 [Chem. Abstr. 2009, 150, 494618].

    40. [40]

      [38] Hamdouchi, C.; Lineswala, J. P.; Maiti, P. WO 2011046851, 2011 [Chem. Abstr. 2011, 154, 486226].

    41. [41]

      [39] https://clinicaltrials.gov/show/NCT01358981

    42. [42]

      [40] Hamdouchi, C. WO 2013025424, 2013 [Chem. Abstr. 2013, 158, 331040].

    43. [43]

      [41] Rao, J. M. R.; Arumugam, N.; Ansari, M. M.; Gudla, C.; Pachiyappan, S.; Ramalingam, M.; George, J.; Arul, G. F.; Bommegowda, Y. K.; Angupillai, S. K.; Kottamalai, R.; Jidugu, P.; Rao, D. S. WO 2012011125, 2012 [Chem. Abstr.2012, 156, 202874].

    44. [44]

      [42] Gowda, N.; Dandu, A.; Singh, J.; Biswas, S.; Raghav, V.; Lakshmi, M. N.; Shilpa, P. C.; Sunil, V.; Reddy, A.; Sadasivuni, M.; Aparna, K.; Verma, M. K.; Moolemath, Y.; Anup, M. O.; Venkataranganna, M. V.; Somesh, B. P.; Jagannath, M. R. BMC Pharmacol. Toxicol. 2013, 14,28.

  • 加载中
    1. [1]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    4. [4]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    5. [5]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    18. [18]

      . Cover and Table of Contents for Vol.40 No. 12. Acta Physico-Chimica Sinica, 2024, 40(12): -.

    19. [19]

      . . University Chemistry, 2025, 40(3): 0-0.

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(1097)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return