Citation: Cui Haiyan, Cui Chunming. Base-Stabilized 1-Hydrosilaimine: Reactivity of Diaminochlorosilane toward N-Heterocyclic Carbenes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 626-629. doi: 10.6023/cjoc201511002 shu

Base-Stabilized 1-Hydrosilaimine: Reactivity of Diaminochlorosilane toward N-Heterocyclic Carbenes

  • Corresponding author: Cui Haiyan,  Cui Chunming, 
  • Received Date: 2 November 2015
    Available Online: 21 November 2015

    Fund Project: 中央高校基本科研业务费(No. KJQN201551) (No. KJQN201551)国家自然科学基金(No. 21402094) (No. 21402094)江苏省科技计划项目(No. BK20140678) (No. BK20140678)国家重点基础研究发展规划(973计划, No. 2012CB821600)资助项目. (973计划, No. 2012CB821600)

  • Studies on the formation of silaimines are among the most fascinating topics in organosilicon chemistry. The first route to silaimine via eliminaition of Me3SiCl from diaminochlorosilanes is reported. Reaction of aminodichlorosilane ArN(SiMe3)SiHCl2 (1) (Ar=2,6-i-Pr2C6H3) with ArN(SiMe3)Li in Et2O at -78 ℃ followed by stirring the mixture for 5 h at room temperature afforded diaminochlorosilane [ArN(SiMe3)]2SiHCl (2). Compound 2 has been fully characterized by 1H NMR, 13C NMR, 29Si NMR, IR and elemental analysis. Reactivity of 2 with different N-heterocyclic carbenes has been examined. It was found that 2 did not react with sterically hindered N-heterocyclic carbenes (NHC), 3-tert-butylimidazol-2-ylidene (ItBu) and 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (IiPr) at room temperature or under reflux conditions. However, compound 2 could react with one equivalent of 1,3,4,5-tetramethyl-imidazol-2-ylidene (IMe4) to give base-stabilized 1-hydrosilaimine 3. Compound 3 can be viewed as the elimination product from 2 through loss of Me3SiCl, as the small IMe4 coordinate to 2 to form a hypervalent silicon species.
  • 加载中
    1. [1]

      [1](a) Xiong, Y.; Yao, S.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 4302.

    2. [2]

      (b) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877.

    3. [3]

      (c) Power, P. P. Chem. Rev. 1999, 99, 3463.

    4. [4]

      [2](a) Muck, F. M.; Ulmer, A.; Baus, J. A.; Burschka, C.; Tacke, R. Eur. J. Inorg. Chem. 2015, 1860.

    5. [5]

      (b) Cui, H.; Ma, B.; Cui, C. Organometallics 2012, 31, 7339.

    6. [6]

      (c) Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels, B.; Stalke, D. J. Am. Chem. Soc. 2004, 126, 5563.

    7. [7]

      (d) Kocher, N.; Selinka, C.; Leusser, D.; Kost, D.; Kalikhman, I.; Stalke, D. Z. Anorg. Allg. Chem. 2004, 630, 1777.

    8. [8]

      (e) Niessmann, J.; Klingebiel, U.; Schäfer, M.; Boese, R. Organometallics 1998, 17, 947.

    9. [9]

      (f) Denk, M.; Hayashi, R.; West, R. J. Am. Chem. Soc. 1994, 116, 10813.

    10. [10]

      (g) Stalke, D.; Klingebiel, U.; Sheldrick, G. M. J. Organomet. Chem. 1988, 344, 37.

    11. [11]

      [3](a) Wiberg, N.; Schurz, K.; Fischer, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 1053.

    12. [12]

      (b) Wiberg, N.; Schurz, K.; Reber, G.; Müller, G. J. Chem. Soc., Chem., Commun. 1986, 591.

    13. [13]

      (c) Hesse, M.; Klingebiel, U. Angew. Chem., Int. Ed. Engl. 1986, 25, 649.

    14. [14]

      [4](a) Azhakar, R.; Roesky, H. W.; Holstein, J. J.; Pröpper, K.; Dittrich, B. Organometallics 2013, 32, 358.

    15. [15]

      (b) Samuel, P. P.; Azhakar, R.; Ghadwal, R. S.; Sen, S. S.; Roesky, H. W.; Granitzka, M.; Matussek, J.; Herbst-Irmer, R.; Stalke, D. Inorg. Chem. 2012, 51, 11049.

    16. [16]

      (c) Zhang, S.-H.; Yeong, H.-X.; So, C.-W. Chem.-Eur. J. 2011, 17, 3490.

    17. [17]

      (d) Kong, L.; Cui, C. Organometallics 2010, 29, 5738.

    18. [18]

      (e) Iwamoto, T.; Ohnishi, N.; Gui, Z.; Ishida, S.; Isobe, H.; Maeda, S.; Ohno, K.; Kira, M. New J. Chem. 2010, 34, 1637.

    19. [19]

      [5](a) Khan, S.; Sen, S. S.; Kratzert, D.; Tavčar, G.; Roesky, H. W.; Stalke, D. Chem.-Eur. J. 2011, 17, 4283.

    20. [20]

      (b) Ghadwal, R. S.; Roesky, H. W.; Schulzke, C.; Granitzka, M. Organometallics 2010, 29, 6329.

    21. [21]

      [6] Cui, H.; Cui, C. Chem.-Asian J. 2011, 6, 1138.

    22. [22]

      [7](a) Hssf, M.; Schmedake, T. A.; West, R. Acc. Chem. Res. 2000, 33, 704.

    23. [23]

      (b) Driess, M.; Block, S.; Brym, M.; Gamer, M. T. Angew. Chem., Int. Ed. 2006, 45, 2293.

    24. [24]

      [8] Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc. 1994, 116, 2691.

    25. [25]

      [9](a) Inoue, S.; Leszczyńska, K., Angew. Chem., Int. Ed. 2012, 51, 8589.

    26. [26]

      (b) Asay, M.; Inoue, S.; Driess, M., Angew. Chem., Int. Ed. 2011, 50, 9589.

    27. [27]

      (c) Jutzi, P.; Leszczyńska, K.; Neumann, B.; Schoeller, W. W.; Stammler, H.-G. Angew. Chem., Int. Ed. 2009, 48, 2596.

    28. [28]

      (d) Driess, M.; Yao, S.; Brym, M.; van Wüllen, C.; Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628.

    29. [29]

      (e) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew. Chem., Int. Ed. 2006, 45, 3948.

    30. [30]

      (f) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722.

    31. [31]

      (g) Gehrhus, B.; Lappert, M. F.; Heinicke, J.; Boese, R.; Bläser, D. J. Chem. Soc., Chem. Commun. 1995, 1931.

    32. [32]

      [10] Cui, H.; Shao, Y.; Li, X.; Kong, L.; Cui, C. Organometallics 2009, 28, 5191.

    33. [33]

      [11] Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683.

    34. [34]

      [12](a) Agou, T.; Hayakawa, N.; Sasamori, T.; Matsuo, T.; Hashizume, D.; Tokitoh, N. Chem.-Eur. J. 2014, 20, 9246.

    35. [35]

      (b) Inoue, S.; Eisenhut, C. J. Am. Chem. Soc. 2013, 135, 18315.

    36. [36]

      (c) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem.-Eur. J. 2012, 18, 13810.

    37. [37]

      (d) Tanaka, H.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2012, 134, 5540.

    38. [38]

      (e) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683.

    39. [39]

      (f) Filippou, A. C.; Chernov, O.; Schnakenburg, G. Angew. Chem., Int. Ed. 2009, 48, 5687.

    40. [40]

      [13](a) Filippou, A. C.; Chernov, O.; Blom, B.; Stumpf, K. W.; Schnakenburg, G. Chem.-Eur. J. 2010, 16, 2866.

    41. [41]

      (b) Gao, Y.; Zhang, J.; Hu, H.; Cui, C. Organometallics 2010, 29, 3063.

    42. [42]

      [14] Cui, H.; Cui, C. Dalton Trans. 2011, 40, 11937.

    43. [43]

      [15] Scott, N. M.; Dorta, R.; Stevens, E. D.; Correa, A.; Cavallo, L.; Nolan, S. P. J. Am. Chem. Soc. 2005, 127, 3516.

    44. [44]

      [16] Kuhn, N.; Kratz, T. Synthesis 1993, 561.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    5. [5]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    6. [6]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    7. [7]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    14. [14]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    19. [19]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    20. [20]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

Metrics
  • PDF Downloads(1)
  • Abstract views(897)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return