Citation: Cui Haiyan, Cui Chunming. Base-Stabilized 1-Hydrosilaimine: Reactivity of Diaminochlorosilane toward N-Heterocyclic Carbenes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 626-629. doi: 10.6023/cjoc201511002 shu

Base-Stabilized 1-Hydrosilaimine: Reactivity of Diaminochlorosilane toward N-Heterocyclic Carbenes

  • Corresponding author: Cui Haiyan,  Cui Chunming, 
  • Received Date: 2 November 2015
    Available Online: 21 November 2015

    Fund Project: 中央高校基本科研业务费(No. KJQN201551) (No. KJQN201551)国家自然科学基金(No. 21402094) (No. 21402094)江苏省科技计划项目(No. BK20140678) (No. BK20140678)国家重点基础研究发展规划(973计划, No. 2012CB821600)资助项目. (973计划, No. 2012CB821600)

  • Studies on the formation of silaimines are among the most fascinating topics in organosilicon chemistry. The first route to silaimine via eliminaition of Me3SiCl from diaminochlorosilanes is reported. Reaction of aminodichlorosilane ArN(SiMe3)SiHCl2 (1) (Ar=2,6-i-Pr2C6H3) with ArN(SiMe3)Li in Et2O at -78 ℃ followed by stirring the mixture for 5 h at room temperature afforded diaminochlorosilane [ArN(SiMe3)]2SiHCl (2). Compound 2 has been fully characterized by 1H NMR, 13C NMR, 29Si NMR, IR and elemental analysis. Reactivity of 2 with different N-heterocyclic carbenes has been examined. It was found that 2 did not react with sterically hindered N-heterocyclic carbenes (NHC), 3-tert-butylimidazol-2-ylidene (ItBu) and 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (IiPr) at room temperature or under reflux conditions. However, compound 2 could react with one equivalent of 1,3,4,5-tetramethyl-imidazol-2-ylidene (IMe4) to give base-stabilized 1-hydrosilaimine 3. Compound 3 can be viewed as the elimination product from 2 through loss of Me3SiCl, as the small IMe4 coordinate to 2 to form a hypervalent silicon species.
  • 加载中
    1. [1]

      [1](a) Xiong, Y.; Yao, S.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 4302.

    2. [2]

      (b) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877.

    3. [3]

      (c) Power, P. P. Chem. Rev. 1999, 99, 3463.

    4. [4]

      [2](a) Muck, F. M.; Ulmer, A.; Baus, J. A.; Burschka, C.; Tacke, R. Eur. J. Inorg. Chem. 2015, 1860.

    5. [5]

      (b) Cui, H.; Ma, B.; Cui, C. Organometallics 2012, 31, 7339.

    6. [6]

      (c) Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels, B.; Stalke, D. J. Am. Chem. Soc. 2004, 126, 5563.

    7. [7]

      (d) Kocher, N.; Selinka, C.; Leusser, D.; Kost, D.; Kalikhman, I.; Stalke, D. Z. Anorg. Allg. Chem. 2004, 630, 1777.

    8. [8]

      (e) Niessmann, J.; Klingebiel, U.; Schäfer, M.; Boese, R. Organometallics 1998, 17, 947.

    9. [9]

      (f) Denk, M.; Hayashi, R.; West, R. J. Am. Chem. Soc. 1994, 116, 10813.

    10. [10]

      (g) Stalke, D.; Klingebiel, U.; Sheldrick, G. M. J. Organomet. Chem. 1988, 344, 37.

    11. [11]

      [3](a) Wiberg, N.; Schurz, K.; Fischer, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 1053.

    12. [12]

      (b) Wiberg, N.; Schurz, K.; Reber, G.; Müller, G. J. Chem. Soc., Chem., Commun. 1986, 591.

    13. [13]

      (c) Hesse, M.; Klingebiel, U. Angew. Chem., Int. Ed. Engl. 1986, 25, 649.

    14. [14]

      [4](a) Azhakar, R.; Roesky, H. W.; Holstein, J. J.; Pröpper, K.; Dittrich, B. Organometallics 2013, 32, 358.

    15. [15]

      (b) Samuel, P. P.; Azhakar, R.; Ghadwal, R. S.; Sen, S. S.; Roesky, H. W.; Granitzka, M.; Matussek, J.; Herbst-Irmer, R.; Stalke, D. Inorg. Chem. 2012, 51, 11049.

    16. [16]

      (c) Zhang, S.-H.; Yeong, H.-X.; So, C.-W. Chem.-Eur. J. 2011, 17, 3490.

    17. [17]

      (d) Kong, L.; Cui, C. Organometallics 2010, 29, 5738.

    18. [18]

      (e) Iwamoto, T.; Ohnishi, N.; Gui, Z.; Ishida, S.; Isobe, H.; Maeda, S.; Ohno, K.; Kira, M. New J. Chem. 2010, 34, 1637.

    19. [19]

      [5](a) Khan, S.; Sen, S. S.; Kratzert, D.; Tavčar, G.; Roesky, H. W.; Stalke, D. Chem.-Eur. J. 2011, 17, 4283.

    20. [20]

      (b) Ghadwal, R. S.; Roesky, H. W.; Schulzke, C.; Granitzka, M. Organometallics 2010, 29, 6329.

    21. [21]

      [6] Cui, H.; Cui, C. Chem.-Asian J. 2011, 6, 1138.

    22. [22]

      [7](a) Hssf, M.; Schmedake, T. A.; West, R. Acc. Chem. Res. 2000, 33, 704.

    23. [23]

      (b) Driess, M.; Block, S.; Brym, M.; Gamer, M. T. Angew. Chem., Int. Ed. 2006, 45, 2293.

    24. [24]

      [8] Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc. 1994, 116, 2691.

    25. [25]

      [9](a) Inoue, S.; Leszczyńska, K., Angew. Chem., Int. Ed. 2012, 51, 8589.

    26. [26]

      (b) Asay, M.; Inoue, S.; Driess, M., Angew. Chem., Int. Ed. 2011, 50, 9589.

    27. [27]

      (c) Jutzi, P.; Leszczyńska, K.; Neumann, B.; Schoeller, W. W.; Stammler, H.-G. Angew. Chem., Int. Ed. 2009, 48, 2596.

    28. [28]

      (d) Driess, M.; Yao, S.; Brym, M.; van Wüllen, C.; Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628.

    29. [29]

      (e) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew. Chem., Int. Ed. 2006, 45, 3948.

    30. [30]

      (f) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722.

    31. [31]

      (g) Gehrhus, B.; Lappert, M. F.; Heinicke, J.; Boese, R.; Bläser, D. J. Chem. Soc., Chem. Commun. 1995, 1931.

    32. [32]

      [10] Cui, H.; Shao, Y.; Li, X.; Kong, L.; Cui, C. Organometallics 2009, 28, 5191.

    33. [33]

      [11] Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683.

    34. [34]

      [12](a) Agou, T.; Hayakawa, N.; Sasamori, T.; Matsuo, T.; Hashizume, D.; Tokitoh, N. Chem.-Eur. J. 2014, 20, 9246.

    35. [35]

      (b) Inoue, S.; Eisenhut, C. J. Am. Chem. Soc. 2013, 135, 18315.

    36. [36]

      (c) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem.-Eur. J. 2012, 18, 13810.

    37. [37]

      (d) Tanaka, H.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2012, 134, 5540.

    38. [38]

      (e) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683.

    39. [39]

      (f) Filippou, A. C.; Chernov, O.; Schnakenburg, G. Angew. Chem., Int. Ed. 2009, 48, 5687.

    40. [40]

      [13](a) Filippou, A. C.; Chernov, O.; Blom, B.; Stumpf, K. W.; Schnakenburg, G. Chem.-Eur. J. 2010, 16, 2866.

    41. [41]

      (b) Gao, Y.; Zhang, J.; Hu, H.; Cui, C. Organometallics 2010, 29, 3063.

    42. [42]

      [14] Cui, H.; Cui, C. Dalton Trans. 2011, 40, 11937.

    43. [43]

      [15] Scott, N. M.; Dorta, R.; Stevens, E. D.; Correa, A.; Cavallo, L.; Nolan, S. P. J. Am. Chem. Soc. 2005, 127, 3516.

    44. [44]

      [16] Kuhn, N.; Kratz, T. Synthesis 1993, 561.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    8. [8]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    9. [9]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    10. [10]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    11. [11]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    12. [12]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    13. [13]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    17. [17]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    20. [20]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

Metrics
  • PDF Downloads(1)
  • Abstract views(986)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return