Citation: Tan Nianyuan, Wang Penghui, Xu Xinhua, Gao Qingsong, Au Chaktong, Qiu Renhua. Efficient Synthesis of β-Amino Alcohols Promoted by Triphenylbismuth Bisperfluorooctanesulfonates[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 1094-1098. doi: 10.6023/cjoc201510035 shu

Efficient Synthesis of β-Amino Alcohols Promoted by Triphenylbismuth Bisperfluorooctanesulfonates

  • Corresponding author: Au Chaktong, pctowl@hotmail.com Qiu Renhua, renhuaqiu@hnu.edu.cn
  • Received Date: 29 October 2015
    Revised Date: 21 January 2016

    Fund Project: the Natural Science Foundation of Hunan Province No.14JJ7027and the Key Project of Hunan Province Education Department No.15A041Projected support by the National Natural Science Foundation of China No.21373003

Figures(2)

  • In this paper, a novel air-stable triphenylbismuth bisperfluorooctanesulfonate was synthesized by treatment of moisture-sensitive triphenylbismuth dichloride with silver bisperfluorooctanesulfonate in anhydrous CH2Cl2 at room temperature. Its catalytic assessment results show that the reactions of arylamine and epoxide proceed efficiently in the presence of triphenylbismuth bisperfluorooctanesulfonates 1(5.0 mol%) under solvent-free condition, affording β-amino alcohols in good to excellent yields. The yields of desired products do not reduce obviously after recycling for 4 times of catalyst 1. Hence, a convenient and efficient method for preparation of β-amino alcohols is provided.
  • 加载中
    1. [1]

    2. [2]

      Métro, T.-X.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2007, 72, 6556. 

    3. [3]

    4. [4]

      Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703. 

    5. [5]

      Tanaka, Y.; Taniguchi, N.; Uemura, M. Org. Lett. 2002, 4, 835.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      Reddy, L. R.; Reddy, M. A.; Bhanumathi, N.; Rao, K. R. New J. Chem. 2001, 25, 221. 

    10. [10]

      Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett. 2002, 43, 7891.

    11. [11]

      Thirupathaiah, A.; Ramanna, S.; Rao, G. V. Orient. J. Chem. 2009, 25, 165.

    12. [12]

      Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315. 

    13. [13]

      Swamy, N. R.; Goud, T. V.; Reddy, S. M.; Krishnaiah, P.; Venkateswarlu, Y. Synth. Commun. 2004, 34, 727.

    14. [14]

      Singh, M. C.; Peddinti, R. K. Tetrahedron Lett. 2007, 48, 7354. 

    15. [15]

      Pachón, L. D.; Gamez, P.; Brussel. J. J. M.; Reedijk, J. Tetrahedron Lett. 2003, 44, 6025. 

    16. [16]

      Kamal, A.; Prasad, B. R.; Reddy, A. M.; Khan, M. N. A. Catal. Lett. 2007, 8, 1876.

    17. [17]

      Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Venkat Narsaiah, A. Tetrahedron Lett. 2003, 44, 1047. 

    18. [18]

      Azizi, N.; Saidi, M. R. Tetrahedron 2007, 63, 888. 

    19. [19]

      Kureshy, R. I.; Singh, S.; Khan, N. H.; Abdi, S. H. R.; Suresh, E.; Jasra, R. V. J. Mol. Catal. A: Chem. 2007, 264, 162. 

    20. [20]

      Sreedhar, B.; Radhika, P.; Neelima, B.; Hebalkar, N. J. Mol. Catal. A: Chem. 2007, 272, 159. 

    21. [21]

      Bordoloi, A.; Hwang, Y. K.; Hwang, J-S.; Halligudi, S. B. Catal. Commun. 2009, 10, 1398. 

    22. [22]

      Danafar, H.; Yadollahi, B. Catal. Comm. 2009, 10, 842.

    23. [23]

      Heravi, M. M.; Bakhtiari, K.; Alinejhad, H.; Saeedi, M.; Malakooti, R. Chin. J. Chem. 2010, 28, 269.

    24. [24]

      Yin, S. F.; Maruyama, J.; Yamashita, T.; Shimada, S. Angew. Chem., Int. Ed. 2008, 47, 6590. 

    25. [25]

      De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 8345. 

    26. [26]

      Thirupathaiah, A.; Rao, G. V. Indian J. Chem. 2008, 47B, 1762.

    27. [27]

      Hollis, T. K.; Robison, N. P.; Bosnich, B. Tetrahedron Lett. 1992, 33, 6423. 

    28. [28]

      Li, X. S.; Kurita, A.; Man-E, S.; Orita, A.; Otera, J. Organometallics 2005, 24, 2567.

    29. [29]

      An, D. L.; Peng, Z. H.; Orita, A.; Kurita, A.; Man-e, S.; Ohkubo, K.; Li, X. S.; Fukuzumi, S.; Otera, J. Chem. Eur. J. 2006, 12, 1642. 

    30. [30]

      Qiu, R. H.; Xu, X. H.; Peng, L. F.; Zhao, Y. L.; Li, N. B.; Yin, S. F. Chem. Eur. J. 2012, 18, 6172. 

    31. [31]

      Li, N. B.; Wang, J. Y.; Zhang, X. H.; Qiu, R. H.; Wang, X.; Chen, J. Y.; Yin, S. F.; Xu, X. H. Dalton Trans. 2014, 43, 11696. 

    32. [32]

      Zhang, X. H.; Qiu, R. H.; Zhou, C. C.; Yu, J. X.; Li, N. B.; Yin, S. F.; Xu, X. H. Tetrahedron 2015, 71, 1011. 

    33. [33]

      Placzek, A. T.; Donelson, J. L.; Trivedi, R.; Gibbs, R. A.; De, S. K. Tetrahedron Lett. 2005, 46, 9029. 

    34. [34]

      Wang, P. H.; Wang, J. Y.; Au, C.-T.; Qiu, R. H.; Xu, X. H.; Yin, S. F. Adv.Synth. Catal.2016, 358, 1302. 

    35. [35]

      Simona, B.; Francesco, F.; Ferdinando, P.; Luigi, V. Synlett 2007, 2683.

    36. [36]

      Qiu, R. H.; Wang, P. H.; Wang, J. Y.; Zhu, L. Z.; Yin, S. F.; Xu, X. H.CN 105131041, 2015.

    37. [37]

      Danafar, H.; Yadollahi, B. Catal. Commun. 2009, 10, 842.

  • 加载中
    1. [1]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    4. [4]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    6. [6]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    7. [7]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    8. [8]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    9. [9]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Yansong Xiao Yi Huang Xingxing Ma Qiuling Song . The Matteson Reaction in Organic Synthesis: From Fundamentals to Frontiers. University Chemistry, 2025, 40(10): 114-120. doi: 10.12461/PKU.DXHX202411023

    14. [14]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    15. [15]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    19. [19]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(0)
  • Abstract views(923)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return