Citation: Zhou Hongyan, Li Nana, Yang Jingya, Li Tianyuan, Li Zheng. Advance in Catalytic Asymmetric Conjugate Cyanation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 502-511. doi: 10.6023/cjoc201510033 shu

Advance in Catalytic Asymmetric Conjugate Cyanation

  • Corresponding author: Zhou Hongyan,  Yang Jingya, 
  • Received Date: 28 October 2015
    Available Online: 25 November 2015

    Fund Project: 国家自然科学基金(Nos. 21362034, 21462038) (Nos. 21362034, 21462038)高等学校博士学科点专项科研基金(No. 20136203120005) (No. 20136203120005)甘肃省高等学校科研(No. 2013B-003) (No. 2013B-003)甘肃农业大学科技创新基金(No. GAU-CX1115)资助项目. (No. GAU-CX1115)

  • As one of the most important methods to construct C—C bond in enantioselective manner and afford optically active β-cyano compounds, catalytic asymmetric conjugate cyanation reaction has attracted much attentions worldwide since the first report in 2003. Over the past decade, some important achievements have been made in the catalytic asymmetric conjugate cyanation of α,β-unsaturated imides, α,β-unsaturated N-acylpyrroles, α,β-unsaturated ketones, α,β-unsaturated esters, and nitroalkenes. The research progress in this field is reviewed from both metal catalysis and organocatalysis based on different Michael acceptors.
  • 加载中
    1. [1]

      [1] For selected review, see:(a) Wang, W.; Liu, X.; Lin, L.; Feng, X. Eur. J. Org. Chem. 2010, 4751. For representative examples, see:

    2. [2]

      (b) Chen, F.-X.; Zhou, H.; Liu, X.; Qin, B.; Feng, X.; Zhang, G.; Jiang, Y. Chem. Eur. J. 2004, 10, 4790.

    3. [3]

      (c) Liu, X.; Qin, B.; Zhou, X.; He, B.; Feng, X. J. Am. Chem. Soc. 2005, 127, 12224.

    4. [4]

      (d) Shen, K.; Liu, X.; Li, Q.; Feng, X. Tetrahedron 2008, 64, 147.

    5. [5]

      (e) Cao, J.-J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49, 4976.

    6. [6]

      [2] For selected review, see:(a) Liu, Y.-L.; Zhou, J. Synthesis 2015, 47, 1210.

    7. [7]

      (b) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947. For representative examples, see:

    8. [8]

      (c) Wang, J.; Hu, X.; Jiang, J.; Gou, S.; Huang, X.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2007, 46, 8468.

    9. [9]

      (d) Wang, J.; Wang, W.; Li, W.; Hu, X.; Shen, K.; Tan, C.; Liu, X.; Feng, X. Chem. Eur. J. 2009, 15, 11642.

    10. [10]

      (e) Liu, Y.-L.; Zhou, F.; Cao, J.-J.; Ji, C.-B.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2010, 8, 3847.

    11. [11]

      (f) Liu, Y.-L.; Shi, T.-D.; Zhou, F.; Zhao, X.-L.; Wang, X.; Zhou, J. Org. Lett. 2011, 13, 3826.

    12. [12]

      (g) Liu, Y.-L.; Zhou, J. Chem. Commun. 2013, 49, 4421.

    13. [13]

      [3] Hegedus, L. S.; Cross, J. J. Org. Chem. 2004, 69, 8492.

    14. [14]

      [4] Winkler, M.; Knall, A. C.; Kulterer, M. R.; Klempier, N. J. Org. Chem. 2007, 72, 7423.

    15. [15]

      [5] Vázquez-Romero, A.; Rodríguez, J.; Lledó, A.; Verdaguer, X.; Riera, A. Org. Lett. 2008, 10, 4509.

    16. [16]

      [6] Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am. Chem. Soc. 2008, 130, 13110.

    17. [17]

      [7] Rahman, S. M. A.; Ohno, H.; Maezaki, N.; Iwata, C.; Tanaka, T. Org. Lett. 2000, 2, 2893.

    18. [18]

      [8] Rahman, S. M. A.; Ohno, H.; Yoshino, H.; Satoh, N.; Tsukaguchi, M.; Murakami, K.; Iwata, C.; Maezaki, N.; Tanaka, T. Tetrahedron 2001, 57, 127.

    19. [19]

      [9] Mander, L. N.; Thomson, R. J. J. Org. Chem. 2005, 70, 1654.

    20. [20]

      [10] Muratake, H.; Natsume, M. Tetrahedron 2006, 62, 7071.

    21. [21]

      [11] Siwicka, A.; Cuperly, D.; Tedeschi, L.; Le Vézouët. R.; White, A. J. P.; Barrett, A. G. M. Tetrahedron 2007, 63, 5903.

    22. [22]

      [12] Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312.

    23. [23]

      [13] Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442.

    24. [24]

      [14] Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 514.

    25. [25]

      [15] Dahuron, N.; Langlois, N. Synlett 1996, 51.

    26. [26]

      [16] Enders, D.; Syrig, R.; Raabe, G.; Fernández, R.; Gasch, C.; Lassaletta, J. M.; Llera, J.-M. Synthesis 1996, 48.

    27. [27]

      [17] Lassaletta, J. M.; Fernández, R.; MartínZamora, E.; Díez, E. J. Am. Chem. Soc. 1996, 118, 7002.

    28. [28]

      [18] Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928.

    29. [29]

      [19] Mazet, C.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2008, 47, 1762.

    30. [30]

      [20] Madhavan, N.; Weck, M. Adv. Synth. Catal. 2008, 350, 419.

    31. [31]

      [21] Madhavan, N.; Takatani, T.; Sherrill, C. D.; Weck, M. Chem. Eur. J. 2009, 15, 1186.

    32. [32]

      [22] Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63, 5820.

    33. [33]

      [23] Morita, M.; Drouin, L.; Motoki, R.; Kimura, Y.; Fujimori, I.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 138, 3858.

    34. [34]

      [24] Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 8862.

    35. [35]

      [25] Sakaguchi, Y.; Kurono, N.; Yamauchi, K.; Ohkuma, T. Org. Lett. 2014, 16, 808.

    36. [36]

      [26] Ohkuma, T.; Kurono, N. Synlett 2012, 23, 1865.

    37. [37]

      [27] Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 6072.

    38. [38]

      [28] Yang, J.; Wang, Y.; Wu, S.; Chen, F.-X. Synlett 2009, 3365.

    39. [39]

      [29] Yang, J.; Chen, F.-X. Chin. J. Chem. 2010, 28, 981.

    40. [40]

      [30] Yang, J.; Shen, Y.; Chen, F.-X. Synthesis 2010, 1325.

    41. [41]

      [31] Yang, J.; Wu, S.; Chen, F.-X. Synlett 2010, 2725.

    42. [42]

      [32] Kurono, N.; Nii, N.; Sakaguchi, Y.; Uemura, M.; Ohkuma, T. Angew. Chem., Int. Ed. 2011, 50, 5541.

    43. [43]

      [33] Wang, Y.-F.; Zeng, W.; Sohail, M.; Guo, J.; Wu, S.; Chen, F.-X. Eur. J. Org. Chem. 2013, 4624.

    44. [44]

      [34] Zhang, J.; Liu, X.; Wang, R. Chem. Eur. J. 2014, 20, 4911.

    45. [45]

      [35] Wang, J.; Li, W.; Liu, Y.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 1280.

    46. [46]

      [36] Bernardi, L.; Fini, F.; Fochi, M.; Ricci, A. Synlett 2008, 1857.

    47. [47]

      [37] Bernal, P.; Fernández, R.; Lassaletta, J. M. Chem. Eur. J. 2010, 16, 7714.

    48. [48]

      [38] Lin, L.; Yin, W.; Fu, X.; Zhang, J.; Ma, X.; Wang, R. Org. Biomol. Chem. 2012, 10, 83.

    49. [49]

      [39] North, M.; Watson, J. M. ChemCatChem 2013, 5, 2405.

    50. [50]

      [40] Jakhar, A.; Sadhukhan, A.; Khan, N.-u. H.; Saravanan, S.; Kureshy, R. I.; Abdi, S. H. R.; Bajaj, H. C. ChemCatChem 2014, 6, 2656.

    51. [51]

      [41] For selected reviews on asymmetric organocatalysis, see:(a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.

    52. [52]

      (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.

    53. [53]

      (c) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719.

    54. [54]

      (d) List, B. Chem. Rev. 2007, 107, 5413.

    55. [55]

      (e) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638.

    56. [56]

      (f) MacMillan, D. W. C. Nature 2008, 455, 304.

    57. [57]

      (g) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.

    58. [58]

      (h) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.

    59. [59]

      (i) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.

    60. [60]

      [42] For review, see: Alemán, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774.

    61. [61]

      [43] For review, see:(a) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.

    62. [62]

      (b) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222.

    63. [63]

      (c) Jew, S.; Park, H. Chem. Commun. 2009, 7090.

    64. [64]

      (d) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534.

    65. [65]

      [44] Provencher, B. A.; Bartelson, K. J.; Liu, Y.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2011, 50, 10565.

    66. [66]

      [45] Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.

    67. [67]

      [46] Liu, Y.; Shirakawa, S.; Maruoka, K. Org. Lett. 2013, 15, 1230.

    68. [68]

      [47](a) Li, Z.; Liu, C.; Zhang, Y.; Li, R.; Ma, B.; Yang, J. Synlett 2012, 23, 2567.

    69. [69]

      (b) Li, Z.; Zhang, Y.; Wen, F.; Yin, J.; Zheng, H.; Li, H.; Yang, J. J. Chem. Res. 2013, 37, 601.

    70. [70]

      (c) Li, Z.; Yin, J.; Li, T.; Wen, G.; Shen, X.; Yang, J. Tetrahedron 2014, 70, 5619.

    71. [71]

      (d) Yang, J.; Zhan, B.; Ma, B.; Xiang, X.; Bao, Y.; Li, Z. Chin. J. Org. Chem. 2015, 35, 1286 (in Chinese). (杨靖亚, 占宝华, 马奔, 向现成, 保云芬, 李政, 有机化学, 2015, 35, 1286.)

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    13. [13]

      Nan Wu Hang Zhang Lingling Wei Quan Gu Haoquan Zheng Weiqiang Zhang Rui Cao . Cyanide: Poison or Treasure?. University Chemistry, 2025, 40(7): 177-188. doi: 10.12461/PKU.DXHX202409072

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    16. [16]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(1)
  • Abstract views(1075)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return