Citation: Li Zhipeng, Chen Feiran, Wang Dongyang, Huang Xingtian, Li Yiqun. Agarose Hydrogel Entrapped Trisodium Citrate Catalyzed Multicomponent Reactions for the Synthesis of Benzopyran and Pyranopyrazole Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 838-843. doi: 10.6023/cjoc201510010 shu

Agarose Hydrogel Entrapped Trisodium Citrate Catalyzed Multicomponent Reactions for the Synthesis of Benzopyran and Pyranopyrazole Derivatives

  • Corresponding author: Li Yiqun, 
  • Received Date: 11 October 2015
    Available Online: 25 November 2015

    Fund Project: 国家自然科学基金(Nos.21372099,21072077) (Nos.21372099,21072077)广东省自然科学基金(No.10151063201000051,8151063201000016)资助项目. (No.10151063201000051,8151063201000016)

  • An efficient method for the synthesis of benzopyran derivatives and pyrano[2,3-c]pyrazole derivatives via multicomponent reaction in the presence of agarose hydrogel entrapped trisodium citrate (gel-citrate) as catalyst is developed. The protocol presented here has the merits of easy preparation and handling of catalyst, environmentally benign, simple operation and convenient workup, and excellent yields. Moreover, the catalyst could be recovered and reused at least 6 cycles without apparently losing its activities.
  • 加载中
    1. [1]

      [1] Strecker, A. Ann. 1850, 75, 27.

    2. [2]

      [2] Hantzsch, A. Ber. Dtsch. Chem. Ges. 1881, 14, 1637.

    3. [3]

      [3] Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647.

    4. [4]

      [4] Ugi, I. Angew. Chem., Int. Ed. Engl. 1962, 1, 8.

    5. [5]

      [5] (a) Ruijter, E.; Scheffelaar, R.; Orru, R. V. Angew. Chem., Int. Ed. Engl. 2011, 50, 6234.

    6. [6]

      (b) Wang, J.; Shen, Q.; Li, P.; Peng, Y.; Song, G. Org. Biomol. Chem. 2014, 12, 5597.

    7. [7]

      (c) Banfi, L.; Basso, A.; Moni, L.; Riva, R. Eur. J. Org. Chem. 2014, 2014, 2005.

    8. [8]

      (d) Bharti, R.; Parvin, T. RSC Adv. 2015, 5, 66833.

    9. [9]

      (e) Nikbakht, A.; Ramezanpour, S.; Balalaie, S.; Rominger, F. Tetrahedron 2015, 71, 6790.

    10. [10]

      (f) Liu, B.; Wei, E.; Lin, S.; Zhao, B.; Liang, F. Chem. Commun. 2014, 50, 6995.

    11. [11]

      [6] (a) Wang, Q. F.; Song, X. K.; Yan, C. G. Prog. Chem. 2009, 21, 997 (in Chinese). (王琦芳, 宋肖锴, 颜朝国, 化学进展, 2009, 21, 997.)

    12. [12]

      (b) Guo, H. Y.; Tian, J. J. Chin. J. Org. Chem. 2011, 31, 1752 (in Chinese). (郭红云, 田金金, 有机化学, 2011, 31, 1752.)

    13. [13]

      (c) Han, Y.; Sun, J.; Sun, Y.; Gao, H.; Yan, C. G. Chin. J. Org. Chem. 2012, 32, 1577 (in Chinese). (韩莹, 孙晶, 孙岩, 高红, 颜朝国, 有机化学, 2012, 32, 1577.)

    14. [14]

      (d) Xiao, L. W.; Peng, X. X.; Zhou, Q. X.; Kou, W.; Shi, Y. R. Chin. J. Org. Chem. 2015, 35, 1204 (in Chinese). (肖立伟, 彭晓霞, 周秋香, 寇伟, 时亚茹, 有机化学, 2015, 35, 1204.)

    15. [15]

      (e) Tian, J. J.; Guo, H. Y. Chin. J. Org. Chem. 2011, 31, 2009 (in Chinese). (田金金, 郭红云, 有机化学, 2011, 31, 2009.)

    16. [16]

      [7] (a) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517.

    17. [17]

      (b) Zhang, G.; Zhang, Y. H.; Yan, J. X.; Chen, R.; Wang, S. L.; Ma, Y. X.; Wang, R. J. Org. Chem. 2012, 77, 878.

    18. [18]

      (c) Kuo, S. C.; Huang, L. J.; Nakamura, H. J. Med. Chem. 1984, 27, 539.

    19. [19]

      (d) Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. P. Natl. Acad. Sci. 2000, 97, 7124.

    20. [20]

      (e) Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Arch. Pharm. 2006, 339, 456.

    21. [21]

      [8] Litvinov, Y. M.; Shestopalov, A. A.; Rodinovskaya, L. A.; Shestopalov, A. M. J. Comb. Chem. 2009, 11, 914.

    22. [22]

      [9] Vasuki, G.; Kumaravel, K. Tetrahedron Lett. 2008, 49, 5636.

    23. [23]

      [10] Ilovaisky, A. I.; Medvedev, M. G.; Merkulova, V. M.; Elinson, M. N.; Nikishin, G. I. J. Heterocycl. Chem. 2014, 51, 523.

    24. [24]

      [11] Zheng, J.; Li, Y. Mendeleev Commun. 2011, 21, 280.

    25. [25]

      [12] Zhao, L. Q.; Li, Y. Q.; Chen, L.; Zhou, B. Chin. J. Org. Chem. 2010, 30, 124 (in Chinese). (赵丽琴, 李毅群, 陈路, 周波, 有机化学, 2010, 30, 124.)

    26. [26]

      [13] Guo, R. Y.; An, Z. M.; Mo, L. P.; Yang, S. T.; Liu, H. X.; Wang, S. X.; Zhang, Z. H. Tetrahedron 2013, 69, 9931.

    27. [27]

      [14] Elnagdi, N. M. H.; Al-Hokbany, N. S. Molecules 2012, 17, 4300.

    28. [28]

      [15] Bihani, M.; Bora, P. P.; Bez, G.; Askari, H. ACS Sustainable Chem. Eng. 2013, 1, 440.

    29. [29]

      [16] Mecadon, H.; Rohman, M. R.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 2523.

    30. [30]

      [17] Wang, X. S.; Shi, D. Q.; Tu, S. J.; Yao, C. S. Synth. Commun. 2003, 33, 119.

    31. [31]

      [18] Tu, S. J.; Gao, Y.; Guo, C.; Shi, D. Q.; Lu, Z. S. Synth. Commun. 2002, 32, 2137.

    32. [32]

      [19] (a) Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217.

    33. [33]

      (b) Buchmeiser, M. R. Chem. Rev. 2008, 109, 303.

    34. [34]

      [20] (a) De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem. Rev. 2002, 102, 3615.

    35. [35]

      (b) Thomas, J. M.; Raja, R. Acc. Chem. Res. 2008, 41, 708.

    36. [36]

      [21] Oded, K.; Musa, S.; Gelman, D.; Blum, J. Catal. Commun. 2012, 20, 68.

    37. [37]

      [22] Abu-Reziq, R.; Shenglof, M.; Penn, L.; Cohen, T.; Blum, J. J. Mol. Catal. A: Chem. 2008, 290, 30.

    38. [38]

      [23] Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L. M.; Pagliaro, M. ChemCatChem 2015, 7, 254.

    39. [39]

      [24] Diz, P.; Pernas, P.; El Maatougui, A.; Tubio, C. R.; Azuaje, J.; Sotelo, E.; Guitián, F.; Gil, A.; Coelho, A. Appl. Catal. A: Gen. 2015, 502, 86.

    40. [40]

      [25] Bandgar, B. P.; Uppalla, L. S. Synth. Commun. 2000, 30, 2071.

    41. [41]

      [26] Chaphekar, S. S.; Samant, S. D. Appl. Catal. A: Gen. 2003, 242, 11.

    42. [42]

      [27] Shinde, S.; Rashinkar, G.; Kumbhar, A.; Kamble, S.; Salunkhe, R. Helv. Chim. Acta 2011, 94, 1943.

    43. [43]

      [28] Shinde, S.; Rashinkar, G.; Salunkhe, R. J. Mol. Liq. 2013, 178, 122.

    44. [44]

      [29] Jadhav, S.; Kumbhar, A.; Kamble, S.; More, P.; Salunkhe, R. C. R. Chim. 2013, 16, 957.

    45. [45]

      [30] Natekar, R.; Samant, S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1996, 35, 1347.

    46. [46]

      [31] (a) Dippy, J. F. J.; Evans, R. M. J. Org. Chem. 1950, 15, 451.

    47. [47]

      (b) Li, Y. L.; Zhou, J. F.; Gong, G. X.; Zhu, F. X. Chin. J. Org. Chem. 2009, 29, 441 (in Chinese). (李艳伦, 周建峰, 贡桂霞, 朱凤霞, 有机化学, 2009, 29, 441.)

    48. [48]

      (c) Bian, Q. L.; Xu, S.; Duan, W. L. Chin. J. Org. Chem. 2015, 35, 234 (in Chinese). (边庆龙, 许胜, 段伟良, 有机化学, 2015, 35, 234.)

    49. [49]

      [32] Nasseri, M. A.; Sadeghzadeh, S. M. Monatsh. Chem. 2013, 144, 1551.

    50. [50]

      [33] Elinson, M. N.; Dorofeev, A. S.; Feducovich, S. K.; Gorbunov, S. V.; Nasybullin, R. F.; Miloserdov, F. M.; Nikishin, G. I. Eur. J. Org. Chem. 2006, 4335.

    51. [51]

      [34] Peng, Y.; Song, G.; Dou, R. Green Chem. 2006, 8, 573.

    52. [52]

      [35] Sharanina, L. G.; Promonenkov, V. K.; Marshtupa, V. P.; Pashchenko, A. V.; Puzanova, V. V.; Sharanin, Y. A.; Klyuev, N. A.; Gusev, L. F.; Gnatusina, A. P. Chem. Heterocycl. Compd. 1982, 18, 607.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(907)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return