Citation: Zheng Yueyou, Xie Qionglin, Wang Bingxi. Synthesis and Photophysical and Electrochemical Properties of 10-Methyl-10H-phenothiazine-5,5-dioxide Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 803-811. doi: 10.6023/cjoc201510008 shu

Synthesis and Photophysical and Electrochemical Properties of 10-Methyl-10H-phenothiazine-5,5-dioxide Derivatives

  • Corresponding author: Wang Bingxi, 
  • Received Date: 9 October 2015
    Available Online: 1 December 2015

    Fund Project: 福州大学科技发展基金(No.2010XQ02)资助项目. (No.2010XQ02)

  • Based on 10-methyl-10H-phenothiazine-5,5-dioxide unit as an acceptor and 9,10-dihydro-9,9-dimethyl-acridine (DMAC) or phenoxazine (PXZ) as donors, four intramolecular charge transfer (ICT) compounds were designed and synthesized by Buchwald-Hartwig cross coupling reactions. Their ground-state geometries were optimized with density functional theory (DFT) at B3LYP level and vertical transition energies were calculated using the optimal Hartree-Fock (HF) exchange method. Resulting compounds were characterized by fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-mass (LC-MS) spectrometry and hybrid quadrupole time-of-flight mass spectrometry (QTOF). Their photophysical properties were systematically investigated. The results show that compound 2a has maximum emission wavelength (λmax) of 422 nm in toluene and its oxygen-free one has photoluminescence quantum yield (PLQY) of 0.367. Theλmax and PLQY for 1a and 1b are 455 nm, 0.083 and 511 nm, 0.098, respectively. Transient photoluminescence decay curves for 5 wt% 1a and 1b doped in PMMA films indicate that their delayed fluorescence lifetimes are 5.78 and 20.00 μs, respectively. According to the time-resolved fluorescence and phosphorescence spectra of 1a and 1b doped in PMMA films at 77 K, their energy gaps (ΔEST) between the lowest singlet state (S1) and the lowest triplet excited state (T1) are determined to be 0.203 and 0.177 eV, respectively, which are consistent with the theoretical values 0.232 and 0.295 eV calculated with time-dependent density functional theory (TD-DFT). As a result, 1a and 1b are expected to be potential thermally activated delayed fluorescence (TADF) materials. The electrochemical properties of the four compounds in dichloromethane solution were determined through cyclic voltammetry using TBAPF6 as supporting electrolyte and ferrocene as internal standard. The HOMO energy levels of 1a, 1b, 2a and 2b are estimated to be -5.369, -5.111, -5.412 and -5.075 eV, respectively. The thermal properties of the four compounds were investigated by thermal gravimetric analysis under nitrogen atmosphere at a heating rate of 10 ℃·min-1 and all compounds show good thermal stability with decomposition temperatures above 420 ℃.
  • 加载中
    1. [1]

      [1] Huang, C. H.; Li, F. Y.; Huang, W. Introduction to Organic Light-emitting Materials and Devices, Fudan University Press, Shanghai, 2005, pp. 3~4 (in Chinese). (黄春辉, 李富友, 黄维, 有机电致发光材料与器件导论, 复旦大学出版社, 上海, 2005, pp. 3~4.)

    2. [2]

      [2] Lowry, M. S.; Bernhard, S. Chem. Eur. J. 2006, 12, 7974.

    3. [3]

      [3] Balzani, V.; Juris, A. Coord. Chem. Rev. 2001, 211, 100.

    4. [4]

      [4] Zhang, Q. S.; Li, J.; Shizu, K.; Huang, S. P.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14707.

    5. [5]

      [5] Wu, S. H.; Aonuma, M.; Zhang, Q. S.; Huang, S. P.; Nakagawa, T.; Kuwabara, K.; Adachi, C. J. Mater. Chem. C 2014, 2, 422.

    6. [6]

      [6] Zhang, Q. S.; Li, B.; Huang S. P.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.

    7. [7]

      [7] Huang, B.; Qi, Q.; Jiang, W.; Tang, J.; Liu, Y. Y.; Fan, W. J.; Yin, Z. H.; Shi, F.; Ban, X. X.; Xu, H. G.; Sun, Y. M. Dyes Pigm. 2014, 111, 135.

    8. [8]

      [8] Wang, H.; Xie, L. S.; Peng. Q.; Meng, L. Q.; Wang, Y.; Yi, Y. P.; Wang, P. F. Adv. Mater. 2014, 26, 5201.

    9. [9]

      [9] Zhang, Q. S.; Kuwabara, H.; J. Potscavage, Jr, W.; Huang, S. P.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18076.

    10. [10]

      [10] Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 11 (in Chinese). (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 11.)

    11. [11]

      [11] Huang, S. P.; Zhang, Q. S.; Shiota, Y.; Nakagawa, T.; Kuwabra, K.; Yoshiazawa, K.; Adachi, C. J. Chem. Theory Comput. 2013, 9, 3874.

    12. [12]

      [12] Chen, J. X.; Huang, X. W. Organic Electroluminescent Materials & Devices, Tsinghua University Press, Beijing, 2005, p. 14 (in Chinese). (陈金鑫, 黄孝文, OLED有机电致发光材料与器件, 清华大学出版社, 北京, 2005, p. 14.)

    13. [13]

      [13] Huang, B.; Dai, Y.; Ban, X. X.; Jiang, W.; Zhang, Z. H.; Sun, K. Y.; Lin, B. P.; Sun, Y. M. Acta Phys.-Chim. Sin. 2015, 31, 1627 (in Chinese). (黄斌, 代钰, 班鑫鑫, 蒋伟, 张兆杭, 孙开涌, 林保平, 孙岳明, 物理化学学报, 2015, 31(8), 1627.)

    14. [14]

      [14] Lee, J. Y.; Shizu, K.; Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. J. Mater. Chem. C 2013, 1, 4599.

    15. [15]

      [15] Shaheen, S.; Jabbour, G.; Kippelen, B.; Peyghambarian, N.; Anderson, J.; Marder, S.; Armstrong, N.; Bellmann, E.; Grubbs, R. Appl. Phys. Lett. 1999, 74, 3212.

    16. [16]

      [16] Xiang, N. J.; Li, D. H.; Liang, W. L.; Su, S. J.; Shi, J. X.; Gong, M. L. Acta Chim. Sinica 2006, 64, 1158 (in Chinese). (向能军, 李狄豪, 梁万里, 苏树江, 石建新, 龚孟濂, 化学学报, 2006, 64, 1158.)

    17. [17]

      [17] Aan, H. C. WO 2012039561, 2012 [Chem. Abstr. 2012, 156, 493689].

    18. [18]

      [18] Deronzier, A. WO 2012066048, 2012 [Chem. Abstr. 2012, 156, 671582].

    19. [19]

      [19]Kim, G.; Yeom, H.; Cho, S.; Seo, J.; Kim, J.; Yang, C. Macromolecules 2012, 45, 1850.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    10. [10]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    15. [15]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(0)
  • Abstract views(943)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return