Citation: Zhao Fei, Wang Jiang, Ding Xiao, Shu Shuangjie, Liu Hong. Application of Sulfonyl in Drug Design[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 490-501. doi: 10.6023/cjoc201510006 shu

Application of Sulfonyl in Drug Design

  • Corresponding author: Liu Hong, 
  • Received Date: 9 October 2015
    Available Online: 13 November 2015

    Fund Project: 国家自然科学基金(No. 21372235)资助项目. (No. 21372235)

  • Sulfonyl-containing compounds comprise a substantial proportion in the therapeutic drugs. It is an important strategy to introduce sulfonyl group into the small molecules for structure-based medicinal chemistry, the application of sulfonyl group in drug design is reviewed in this paper. Structurally, sulfonyl group has similar properties in molecular size and charge distribution with carbonyl, carboxyl, tetrazolium and phosphate group, so it can be introduced into the drug molecules as their bioisostere in order to remain or improve activity. Sulfonyl group possesses unique physicochemical properties, and the introduction of sulfonyl group can also modulate the solubility and acid-base property of the drug molecules. Sulfonyl group can offer two hydrogen-bond receptors, and reasonable introduction of sulfonyl group can enhance the binding affinity of the drug molecules with the targeted proteins to improve activity through hydrogen bond interactions. What's more, sulfonyl group is relatively stable in terms of structure, the introduction of sulfonyl group can increase the metabolic stability of drugs to prolong the duration of action by blocking metabolically labile sites, improve the pharmacokinetic properties of the drug molecules to elevate the bioavailability. Sulfonyl group belongs to polar groups, which can also increase the polarity of the drug molecules to diminish hERG activity.
  • 加载中
    1. [1]

      [1] Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. W.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.

    2. [2]

      [2] Takenaka, T.; Honda, K.; Fujikura, T. J. Pharm. Pharmacol. 1984, 36, 539.

    3. [3]

      [3] Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6, 1819.

    4. [4]

      [4] Cross, P. E.; Arrowsmith, J. E.; Thomas, G. N.; Gwilt, M.; Burges, R. A.; Higgins, A. J. J. Med. Chem. 1990, 33, 1151.

    5. [5]

      [5] Quesnel, L. B.; Al-Najjar, A. R.; Buddhavudhikrai, P. J. Appl. Bacteriol. 1978, 45, 397.

    6. [6]

      [6] Uchida, T.; Hayashi, K.; Kido, H.; Watanabe, M. J. Pharm. Pharmacol. 1992, 44, 39.

    7. [7]

      [7] Grell, W.; Hurnaus, R.; Griss, G.; Sauter, R.; Rupprecht, E.; Mark, M.; Luger, P.; Nar, H.; Wittneben, H.; Müller, P. J. Med. Chem. 1998, 41, 5219.

    8. [8]

      [8] Baguley, B. C.; Denny, W. A.; Atwell, G. J.; Cain, B. F. J. Med. Chem. 1981, 24, 520.

    9. [9]

      [9] Colas, B.; Slama, M.; Masson, H.; Colas, J. L.; Collin, T.; Arnould, M. L.; Hary, L.; Safar, M.; Andrejak, M. Fundam. Clin. Pharmacol. 2000, 14, 363.

    10. [10]

      [10] Sharghi, N.; Lalezari, N. S.; Niloofari, G.; Golgolab, H. J. Med. Chem. 1969, 12, 696.

    11. [11]

      [11] Miyashita, M.; Matsumoto, T.; Matsukubo, H.; Iinuma, F.; Taga, F.; Sekiguchi, H.; Hamada, K.; Okamura, K.; Nishino, K. J. Med. Chem. 1992, 35, 2446.

    12. [12]

      [12] Högberg, T.; Bengtsson, S.; Depaulis, T.; Johansson, L.; Ström, P.; Hall, H.; Ogren, S. O. J. Med. Chem. 1990, 33, 1155.

    13. [13]

      [13] Roushdi, I. M.; Mikhail, A. A.; Chaaban, I. Pharmazie 1977, 32, 269.

    14. [14]

      [14] Leston, S.; Nebot, C.; Nunes, M.; Cepeda, A.; Pardal, M. A.; Ramos, F. Environ. Toxicol. Pharmacol. 2015, 39, 77.

    15. [15]

      [15] Vandyck, K.; Cummings, M. D.; Nyanguile, O.; Boutton, C. W.; Vendeville, S.; Mcgowan, D.; Devogelaere, B.; Amssoms, K.; Last, S.; Rombauts, K.; Tahri, A.; Lory, P.; Hu, L.; Beauchamp, D. A.; Simmen, K.; Raboisson, P. J. Med. Chem. 2009, 52, 4099.

    16. [16]

      [16] Hunt, J. T.; Ding, C. Z.; Batorsky, R.; Bednarz, M.; Bhide, R.; Cho, Y.; Chong, S.; Chao, S.; Gullo-Brown, J.; Guo, P.; Kim, S. H.; Lee, F. Y.; Leftheris, K.; Miller, A.; Mitt, T.; Patel, M.; Penhallow, B. A.; Ricca, C.; Rose, W. C.; Schmidt, R.; Slusarchyk, W. A.; Vite, G.; Manne, V. J. Med. Chem. 2000, 43, 3587.

    17. [17]

      [17] Kallander, L. S.; Washburn, D. G.; Hoang, T. H.; Frazee, J. S.; Stoy, P.; Johnson, L.; Lu, Q.; Hammond, M.; Barton, L. S.; Patterson, J. R.; Azzarano, L. M.; Nagilla, R.; Madauss, K. P.; Williams, S. P.; Stewart, E. L.; Duraiswami, C.; Grygielko, E. T.; Xu, X.; Laping, N. J.; Bray, J. D.; Thompson, S. K. Bioorg. Med. Chem. Lett. 2010, 20, 371.

    18. [18]

      [18] Cabrera, D. G.; Douelle, F.; Younis, Y.; Feng, T. S.; Manach, C. L.; Nchinda, A. T.; Street, L. J.; Scheurer, C.; Kamber, J.; White, K. L.; Montagnat, O. D.; Ryan, E.; Katneni, K.; Zabiulla, K. M.; Joseph, J. T.; Bashyam, S.; Waterson, D.; Witty, M. J.; Charman, S. A.; Wittlin, S.; Chibale, K. J. Med. Chem. 2012, 55, 11022.

    19. [19]

      [19] Bahl, A.; Barton, P.; Bowers, K.; Brough, S.; Evans, R.; Luckhurst, C. A.; Mochel, T.; Perry, M. W.; Rigby, A.; Riley, R. J.; Sanganee, H.; Sisson, A.; Springthorpe, B. Bioorg. Med. Chem. Lett. 2012, 22, 6688.

    20. [20]

      [20] Alexiou, P.; Demopoulos, V. J. J. Med. Chem. 2010, 53, 7756.

    21. [21]

      [21] Combs, A. P.; Yue, E. W.; Bower, M.; Ala, P. J.; Wayland, B.; Douty, B.; Takvorian, A.; Polam, P.; Wasserman, Z.; Zhu, W.; Crawley, M. L.; Pruitt, J.; Sparks, R.; Glass, B.; Modi, D.; McLaughlin, E.; Bostrom, L.; Li, M.; Galya, L.; Blom, K.; Hillman, M.; Gonneville, L.; Reid, B. G.; Wei, M.; Becker-Pasha, M.; Klabe, R.; Huber, R.; Li, Y.; Hollis, G.; Burn, T. C.; Wynn, R.; Liu, P.; Metcalf, B. J. Med. Chem. 2005, 48, 6544.

    22. [22]

      [22] Roda, A.; Cerrè, C.; Manetta, A. C.; Cainelli, G.; Umani-Ronchi, A.; Panunzio, M. J. Med. Chem. 1996, 39, 2270.

    23. [23]

      [23] Breslin, H. J.; Lane, B. M.; Ott, G. R.; Ghose, A. K.; Angeles, T. S.; Albom, M. S.; Cheng, M.; Wan, W.; Haltiwanger, R. C.; Wells-Knecht, K. J.; Dorsey, B. D. J. Med. Chem. 2012, 55, 449.

    24. [24]

      [24] Kamisuki, S.; Shirakawa, T.; Kugimiya, A.; Abu-Elheiga, L.; Choo, H. Y.; Yamada, K.; Shimogawa, H.; Wakil, S. J.; Uesugi, M. J. Med. Chem. 2011, 54, 4923.

    25. [25]

      [25] Dangelo, N. D.; Kim, T. S.; Andrews, K.; Booker, S. K.; Caenepeel, S.; Chen, K.; Damico, D.; Freeman, D.; Jiang, J.; Liu, L.; McCarter, J. D.; Miguel, T. S.; Mullady, E. L.; Schrag, M.; Subramanian, R.; Tang, J.; Wahl, R. C.; Wang, L.; Whittington, D. A.; Wu, T.; Xi, N.; Xu, Y.; Yakowec, P.; Yang, K.; Zalameda, L. P.; Zhang, N.; Hughes, P.; Norman, M. H. J. Med. Chem. 2011, 54, 1789.

    26. [26]

      [26] Asada, M.; Obitsu, T.; Kinoshita, A.; Nakai, Y.; Nagase, T.; Sugimoto, I.; Tanaka, M.; Takizawa, H.; Yoshikawa, K.; Sato, K.; Narita, M.; Ohuchida, S.; Nakai, H.; Toda, M. Bioorg. Med. Chem. Lett. 2010, 20, 2639.

    27. [27]

      [27] Scola, P. M.; Sun, L.-Q.; Chen, J.; Wang, A. X.; Sit, S.-Y.; Chen, Y.; D'Andrea, S. V.; Zheng, Z.; Sin, N.; Venables, B. L.; Cocuzza, A.; Bilder, D.; Carini, D.; Johnson, B.; Good, A. C.; Rajamani, R.; Klei, H. E.; Friborg, J.; Barry, D.; Levine, S.; Chen, C.; Sheaffer, A.; Hernandez, D.; Falk, P.; Yu, F.; Zhai, G.; Knipe, J. O.; Mosure, K.; Shu, Y.-Z.; Phillip, T.; Arora, V. K.; Loy, J.; Adams, S.; Schartman, R.; Browning, M.; Levesque, P. C.; Li, D.; Zhu, J. L.; Sun, H.; Pilcher, G.; Bounous, D.; Lange, R. W.; Pasquinelli, C.; Eley, T.; Colonno, R.; Meanwell, N. A.; McPhee. F. Presented at the 239th National Meeting and Exposition of the American Chemical Society, San Francisco, CA, March 21~25, 2010; MEDI-38.

    28. [28]

      [28] Chakravarty, P. K.; Naylor, E. M.; Chen, A.; Chang, R. S.; Chen, T. B.; Faust, K. A.; Lotti, V. J.; Kivlighn, S. D.; Gable, R. A.; Zingaro, G. J. J. Med. Chem. 1994, 37, 4068.

    29. [29]

      [29] Pinard, E.; Alberati, D.; Borroni, E.; Fischer, H.; Hainzl, D.; Jolidon, S.; Moreau, J. L.; Narquizian, R.; Nettekoven, M.; Norcross, R. D.; Stalder, H.; Thomas, A. W. Bioorg. Med. Chem. Lett. 2008, 18, 5134.

    30. [30]

      [30] Sturino, C. F.; O'Neill, G.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li, L.; Roy, B.; Scheigetz, J.; Tsou, N.; Aubin, Y.; Bateman, K. P.; Chauret, N.; Day, S. H.; Lévesque, J. F.; Seto, C.; Silva, J. H.; Trimble, L. A.; Carriere, M. C.; Denis, D.; Greig, G.; Kargman, S.; Lamontagne, S.; Mathieu, M. C.; Sawyer, N.; Slipetz, D.; Abraham, W. M.; Jones, T.; McAuliffe, M.; Piechuta, H.; Nicoll-Griffith, D. A.; Wang, Z.; Zamboni, R.; Young, R. N.; Metters, K. M. J. Med. Chem. 2007, 50, 794.

    31. [31]

      [31] Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49, 5029.

    32. [32]

      [32] Kazmierski, W. M.; Anderson, D. L.; Aquino, C.; Chauder, B. A.; Duan, M.; Ferris, R.; Kenakin, T.; Koble, C. S.; Lang, D. G.; McIntyre, M. S.; Peckham, J.; Watson, C.; Wheelan, P.; Spaltenstein, A.; Wire, M. B.; Svolto, A.; Youngman, M. J. Med. Chem. 2011, 54, 3756.

    33. [33]

      [33] Shu, M.; Loebach, J. L.; Parker, K. A.; Mills, S. G.; Chapman, K. T.; Shen, D. M.; Malkowitz, L.; Springer, M. S.; Gould, S. L.; DeMartino, J. A.; Siciliano, S. J.; Salvo, J. D.; Lyons, K.; Pivnichny, J. V.; Kwei, G. Y.; Carella, A.; Carver, G.; Holmes, K.; Schleif, W. A.; Danzeisen, R.; Hazuda, D.; Kessler, J.; Lineberger, J.; Miller, M. D.; Emini, E. A. Bioorg. Med. Chem. Lett. 2004, 14, 947.

  • 加载中
    1. [1]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    2. [2]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    3. [3]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    4. [4]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    5. [5]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

    6. [6]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    7. [7]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    8. [8]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(4)
  • Abstract views(2496)
  • HTML views(560)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return