Citation: Yin Liuyan, Wang Lanzhi, Li Xiaoqing, An Yingshuang. Progress in Synthesis and Application of Benzo[b][1,4]diazepine Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 711-723. doi: 10.6023/cjoc201510002 shu

Progress in Synthesis and Application of Benzo[b][1,4]diazepine Derivatives

  • Corresponding author: Wang Lanzhi, 
  • Received Date: 8 October 2015
    Available Online: 19 November 2015

    Fund Project: 国家自然科学基金(No.21276064)资助项目. (No.21276064)

  • Benzo[b][1,4]diazepine derivatives is a class of benzo and seven-number heterocyclic compounds containing double nitrogen atoms. It was concerned for its special structural features, strong physiological and pharmacological activity. Therefore, the research on synthetic method and biological activity of benzo[b][1,4]diazepine has become one of the hot issues in the chemical and pharmaceutical areas. Their application in the antimicrobial, anti-neuroinflammatory, anticancer activity and so on in the recently ten years is reviewed. Besides, the progress in synthesis of the benzo[b][1,4]diazepine compounds at different types of catalysts and its synthetic reaction mechanisms are summarized. Meanwhile, the recent works of authors' research group are discussed. Their synthesis and application prospects are also expected.
  • 加载中
    1. [1]

      [1] (a) Pan, X. Q.; Zou, J. P.; Huang, Z. H.; Zhang, W. Tetrahedron Lett. 2008, 49, 5302.

    2. [2]

      (b) Li, X. Q.; Wang S. S.; Cheng, S. Y.; Wang, L. Z. J. Hebei Normal Univ. 2013, 37, 317 (in Chinese). (李晓庆, 王莎莎, 程素艳, 王兰芝, 河北师范大学学报, 2013, 37, 317.)

    3. [3]

      [2] Jiang, Y. J.; Cai, J. J.; Zou, J. P.; Zhang, W. Tetrahedron Lett. 2010, 51, 471.

    4. [4]

      [3] Wang, L.; Sullivan, G. M.; Hexamer, L. A.; Hasvold, L. A.; Thalji, R.; Przytulinska, M.; Tao, Z. F.; Li, G. Q.; Chen, Z. H.; Xiao, Z.; Gu, W. Z.; Xue, J.; Bui, M. H.; Merta, P.; Kovar, P.; Bouska, J. J.; Zhang, H. Y.; Park, C.; Stewart, K. D.; Sham, H. L.; Sowin, T. J.; Rosenberg, S. H.; Lin, N. H. J. Med. Chem. 2007, 50, 4162.

    5. [5]

      [4] Corral, C.; Lissavetzky, J.; Valdolmillos, A. M. J. Heterocycl. Chem. 1985, 22, 1349.

    6. [6]

      [5] Bunin, B. A.; Ellman, J. A. J. Am. Chem. Soc. 1992, 114, 10997.

    7. [7]

      [6] Reddy, K. V. V.; Rao, P. S.; Ashok, D. Synth. Commun. 2000, 30, 1825.

    8. [8]

      [7] Bandgar, B. P.; Patil, A. V.; Chavan, O. S. J. Mol. Catal. A: Chem. 2006, 256, 99.

    9. [9]

      [8] Zhao, H. Y. Ph. D. Dissertation, Doctoral Dissertation of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 2007 (in Chinese). (赵海燕, 博士论文, 中国医学科学院&中国协和医科大学药物研究所, 北京, 2007.)

    10. [10]

      [9] Wüller, W. E.; Groh, B.; Bub, O.; Hofmann, H. P.; Kreiskott, H. Pharmacopsychiatry 1986, 19, 314.

    11. [11]

      [10] Kruse, H. Drug Dev. Res. 1982, 2, 145.

    12. [12]

      [11] Nicholson, A. N.; Stone, B. M.; Clarke, C. H. Br. J. Clin. Pharmacol. 1977, 4, 567.

    13. [13]

      [12] Al-Hiari, Y. M.; Abu-Dahab, R.; El-Abadelah, M. M. Molecules 2008, 13, 2880.

    14. [14]

      [13] Konda, S. G.; Shaikh, B. M.; Chavan, S. A.; Dawane, B. S. Chin. Chem. Lett. 2011, 22, 65.

    15. [15]

      [14] Joshi, Y. C.; Saingar, S.; Kavita; Joshi, P.; Kumar, R. J. Korean Chem. Soc. 2011, 55, 638.

    16. [16]

      [15] Palanisamy, P.; Jenniefer, S. J.; Muthiah, P. T.; Kumaresan, S. RSC Adv. 2013, 3, 19300.

    17. [17]

      [16] Thakrar, S.; Bavishi, A.; Radadiya, A.; Parekh, S.; Bhavsar, D.; Vala, H.; Pandya, N.; Shah, A. J. Heterocycl. Chem. 2013, 50, E73.

    18. [18]

      [17] Wang, L. Z.; Hua, Z. X.; Wang, S. S. Chin. J. Org. Chem. 2013, 33, 2376 (in Chinese). (王兰芝, 花中霞, 王莎莎, 有机化学, 2013, 33, 2376.)

    19. [19]

      [18] Wang, L. Z.; Li, X. Q.; An, Y. S. Org. Biomol. Chem. 2015, 13, 5497.

    20. [20]

      [19] Ha, S. K.; Shobha, D.; Moon, E.; Chari, M. A.; Mukkanti, K.; Ki, S. H.; Ahn, K. H.; Kim, S. Y. Bioorg. Med. Chem. Lett. 2010, 20, 3969.

    21. [21]

      [20] Chen, Y. B.; Le, V.; Xu, X. Y.; Shao, X. S.; Liu, J. W.; Li, Z. Bioorg. Med. Chem. Lett. 2014, 24, 3948.

    22. [22]

      [21] Ekonomopoulou, M. T.; Tsoleridis, C. A.; Argyraki, M.; Polatoglou, E. Genet. Test. Mol. Biomarkers 2010, 14, 377.

    23. [23]

      [22] Eleftheriadis, N.; Neochoritis, C. G.; Tsoleridis, C. A.; Julia, S. S.; Zafiroula, I. K. Eur. J. Med. Chem. 2013, 67, 302.

    24. [24]

      [23] Herbert, J. A. L.; Suschitzky, H. J. Chem. Soc., Perkin. Trans. 1 1974, 2657.

    25. [25]

      [24] Jung, D. I.; Choi, T. W.; Kim, Y. Y.; Kim, I. S.; Park, Y. M.; Lee, Y. G.; Jung, D. H. Synth. Commun. 1999, 29, 1941.

    26. [26]

      [25] Balakrishna, M. S.; Kaboudin. B. Tetrahedron Lett. 2001, 42, 1127.

    27. [27]

      [26] Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Tetrahedron Lett. 2001, 42, 3193.

    28. [28]

      [27] Minothora, P.; Julia, S. S.; Constantinos, A. T. Tetrahedron Lett. 2002, 43, 1755.

    29. [29]

      [28] Yang, H. Q.; Zhao, S. H.; Liu, Y. Y. Chemistry 2015, 78, 505 (in Chinese). (杨会琴, 赵士豪, 刘月英, 化学通报, 2015, 78, 505.)

    30. [30]

      [29] Liu, K.; Chen, Y.; Wang, X. J.; Zhang, H. Org.-Fluorine Ind. 2013, 3, 58 (in Chinese). (刘康, 陈越, 王学军, 张恒, 有机氟工业, 2013, 3, 58.)

    31. [31]

      [30] Nardi, M.; Cozza, A.; Maiuolo, L.; Oliveriob, M.; Procopio, A. Tetrahedron Lett. 2011, 52, 4827.

    32. [32]

      [31] Wu, H. S.; Yang, J.; Wang, L. Chin. J. Chem. 2011, 29, 1721.

    33. [33]

      [32] Maiti, G.; Utpal, K.; Karmakar, R.; Bhattacharya, R. N. Tetrahedron Lett. 2012, 53, 1460.

    34. [34]

      [33] Nagawadea, R. R.; Shinde, D. B. Mendeleev Commun. 2006, 16, 113.

    35. [35]

      [34] Pawar, S. S.; Shingare, M. S.; Thore, S. N. Chin. Chem. Lett. 2009, 20, 32.

    36. [36]

      [35] Heravi, M. M.; Zadsirjan, V.; Behbahani, F. K.; Oskooie, H. A. J. Mol. Catal. A: Chem. 2006, 259, 201.

    37. [37]

      [36] Pandit, S. S.; Vikhe, B. D.; Shelke, G. J. Chem. Sci. 2007, 119, 295.

    38. [38]

      [37] Rekha, M.; Hamza, A.; Venugopal, B. R.; Nagaraju, N. Chin. J. Catal. 2012, 33, 439.

    39. [39]

      [38] Chatterjee, N.; Sarkar, S.; Pal, R.; Sen, A. K. Tetrahedron Lett. 2014, 55, 2261.

    40. [40]

      [39] Guo, P.; Zeng, X. M.; Chen, S.; Luo, M. M. J. Organomet. Chem. 2014, 751, 438.

    41. [41]

      [40] Bandgar, B. P.; Patl, A. V.; Chavan, O. S. J. Mol. Catal. A: Chem. 2006, 256, 99.

    42. [42]

      [41] Fazaeli, R.; Aliyan, H. Appl. Catal. A 2007, 331, 78.

    43. [43]

      [42] Mohammad, A. A.; Iraj, M. B.; Zaghaghi, Z. Catal. Commun. 2008, 9, 2496.

    44. [44]

      [43] Sharma, R. K.; Gulati, S.; Pandey, A. Inorg. Chim. Acta 2013, 397, 21.

    45. [45]

      [44] Maleki, A.; Kamalzare, M. Tetrahedron Lett. 2014, 55, 6931.

    46. [46]

      [45] An, Y. S.; Li, X. Q.; An, X. R.; Wang, L. Z. Monatsh. Chem. 2015, 146, 165.

    47. [47]

      [46] Wang, D. S.; Yan, L.; Wang, X. L. J. Mol. Catal. 2012, 26, 366 (in Chinese). (王德胜, 闫亮, 王晓来, 分子催化, 2012, 26, 366.)

    48. [48]

      [47] Heravia, M. M.; Derikvand, F.; Ranjbar, L.; Bamoharram, F. F. J. Mol. Catal. A: Chem. 2007, 261, 156.

    49. [49]

      [48] Pasquale, G. A.; Ruiz, D. M.; Jios, J. L.; Autinoa, J. C.; Romanelli, G. P. Tetrahedron Lett. 2013, 54, 6574.

    50. [50]

      [49] Li, X. Q.; Wang, L. Z. Chin. Chem. Lett. 2014, 25, 327.

    51. [51]

      [50] Das, B.; Ramu, R.; Ravikanth, B.; Reddy, V. S. J. Mol. Catal. A: Chem. 2006, 246, 76.

    52. [52]

      [51] Kuo, C. W.; More, S. V.; Yao, C. F. Tetrahedron Lett. 2006, 47, 8523.

    53. [53]

      [52] Sangshetti, J. N.; Kokare, N. D.; Shinde, D. B. Chin. Chem. Lett. 2007, 18, 1305.

    54. [54]

      [53] Murai, K.; Nakatani, R.; Kita, Y.; Fujioka, H. Tetrahedron 2008, 64, 11034.

    55. [55]

      [54] Lal, M.; Basha, R. S.; Sarkar, S.; Khan, A. T. Tetrahedron Lett. 2013, 54, 4264.

    56. [56]

      [55] Yadav, G. D.; Yadav, A. R. Ind. Eng. Chem. Res. 2013, 52, 17812.

    57. [57]

      [56] Sarkate, A. P.; Sangshetti, J. N.; Dharbale, N. B.; Sarkate, A. P.; Wakte, P. S.; Shinde, D. B. J. Chil. Chem. Soc. 2013, 58, 2200.

    58. [58]

      [57] Borodina, E. A.; Orlova, N. A.; Kargapolova, I. Y.; Gatilov, Y. V. J. Fluorine Chem. 2014, 162, 66.

    59. [59]

      [58] Tajbakhsh, M.; Hetavi, M. M.; Mohajerani, B.; Ahmadi, A. N. J. Mol. Catal. A: Chem. 2006, 247, 213.

    60. [60]

      [59] Vijayasankar, A. V.; Deepa, S.; Venugopal, B. R.; Nagaraju, N. Chin. J. Catal. 2010, 31, 1321.

    61. [61]

      [60] Shobha, D.; Chari, M. A.; Selvan, S. T.; Oveisib, H.; Manob, A.; Mukkantia, K.; Vinu, A. Microporous Mesoporous Mater. 2010, 129, 112.

    62. [62]

      [61] Jeganathan, M.; Pitchumani, K. ACS Sustainable Chem. Eng. 2014, 2, 1169.

    63. [63]

      [62] Yi, W. B.; Cai, C. J. Fluorine Chem. 2009, 130, 1054.

    64. [64]

      [63] Kurane, R.; Jadhav, J.; Khanapure, S.; Salunkhea, R.; Rashinkar, G. Green Chem. 2013, 15, 1849.

    65. [65]

      [64] Prakash, G. K. S.; Paknia, F.; Narayan, A.; Mathew, T.; Olah, G. A. J. Fluorine Chem. 2013, 152, 99.

    66. [66]

      [65] Jadhav, A. H.; Chinnappan, A.; Patil, R. H.; Kostjukb, S. V.; Kim, H. Chem. Eng. J. 2014, 240, 228.

    67. [67]

      [66] Naeimi, H.; Foroughi, H. Chin. J. Catal. 2015, 36, 734.

    68. [68]

      [67] Radatz, C. S.; Silva, R. B.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Alves, D. Tetrahedron Lett. 2011, 52, 4132.

    69. [69]

      [68] Xu, J. C.; Wei, J. M.; Bian, L. L.; Zhang, J. P.; Chen, J.; Deng, H. M.; Wu, X. Y.; Zhang, H.; Gao, W. Q. Chem. Commun. 2011, 47, 3607.

    70. [70]

      [69] Christophe, C.; Langlois, B. R.; Billard, T. J. Fluorine Chem. 2013, 155, 118.

    71. [71]

      [70] Solan, A.; Nisanci, B.; Belcher, M.; Young, J.; Schafer, C.; Wheeler, K. A.; Torok, B.; Dembinski, R. Green Chem. 2014, 16, 1120.

    72. [72]

      [71] Wang, S. S.; Wang, L. Z. Chem. Res. Appl. 2014, 26, 376 (in Chinese).

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(0)
  • Abstract views(1270)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return