Citation: Niu Yanfang, Qian Ying, Hu Xiudong. Synthesis, Aggregation-Induced Emission Enhancement and Cells Imaging of Water-Soluble Pyridine Naphthalimide-Polyamidoamine Dendrimer[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 555-561. doi: 10.6023/cjoc201509045 shu

Synthesis, Aggregation-Induced Emission Enhancement and Cells Imaging of Water-Soluble Pyridine Naphthalimide-Polyamidoamine Dendrimer

  • Corresponding author: Qian Ying, yingqian@seu.edu.cn
  • Received Date: 30 September 2015
    Revised Date: 6 November 2015

    Fund Project: the National Natural Science Foundation of China 61178057

Figures(7)

  • A water-soluble pyridine naphthalimide-polyamidoamine dendrimer (PN-PAMAM) was synthesized by the amidation reaction of 4-(2-vinylpyridine)-1, 8-naphthalimide unit and the polyamidoamine (PAMAM). The structure was characterized by 1H NMR, 13C NMR, IR and HRMS techniques. PN-PAMAM displayed obvious aggregation-induced emission enhancement (AIEE) behavior. The experimental results demonstrated that dendrimer PN-PAMAM in solid state emitted a yellow-green fluorescence and the maximum emission wavelength was 532 nm. In aqueous solution the maximum emission wavelength was 494 nm and the fluorescence quantum yield was 4.42%. The fluorescence intensity reached the maximum at 60% water volume fraction in H2O/THF mixed solution. The fluorescence emission wavelength was 485 nm and the fluorescence quantum yield was increased to 17.54%. The photophysical properties of the silica nanoparticles loaded AIEE dye PN-PAMAM were examined. The fluorescence emission wavelength was 473 nm and the particle diameter was about 40 nm. In addition, dendrimer PN-PAMAM were applied for breast cancer MCF-7 cells imaging, getting clear blue-field photograph. In summary, the pyridine naphthalimide-PAMAM dendrimer is a water-soluble fluorescent dye and displays AIEE behavior. PN-PAMAM can be widely used in areas of tumor localization, bio-tracking and nano-materials.
  • 加载中
    1. [1]

      Luo, J.-D.; Xie, Z.-L.; Lam, J. W. Y.; Cheng, L; Chen, H.-Y.; Qiu, C.-F.; Kwok, H. S.; Zhan, X.-W.; Liu, Y.-Q.; Zhu, D.-B.; Tang, B.-Z. Chem. Commun. 2001, 18, 1740.

    2. [2]

      Hong, Y.-N.; Lam, J. W. Y.; Tang, B.-Z. Chem. Commun. 2009, 29, 4332.

    3. [3]

      Liu, J.-Z.; Lam, J. W. Y.; Tang, B.-Z. J. Inorg. Organomet. Polym. 2009, 19, 249.  doi: 10.1007/s10904-009-9282-8

    4. [4]

      Chen, J.-W.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.-P.; Lo, S. M. F.; Williams, I. D.; Zhu, D.-B.; Tang, B.-Z. Chem. Mater. 2003, 15, 1535.  doi: 10.1021/cm021715z

    5. [5]

      Hong, Y.-N.; Lam, J. W. Y.; Tang, B.-Z. Chem. Soc. Rev. 2011, 40, 5361.  doi: 10.1039/c1cs15113d

    6. [6]

      Zhao, Z.-J.; Lam, J. W. Y.; Tang, B.-Z. J. Mater. Chem. 2012, 22, 23726.  doi: 10.1039/c2jm31949g

    7. [7]

      Leung, C. W. T.; Hong, Y.-N.; Chen, S.-J.; Zhao, E.-G.; Lam, J. W. Y.; Tang, B.-Z. J. Am. Chem. Soc. 2013, 135, 62.  doi: 10.1021/ja310324q

    8. [8]

      Hu, R.-R.; Lam, J. W. Y.; Liu, Y.; Zhang X.-A.; Tang, B.-Z. Chem. Eur. J. 2013, 19, 5617.  doi: 10.1002/chem.v19.18

    9. [9]

      Yuan, W.-Z.; Gong, Y.-Y.; Chen, S.-M.; Shen, X.-Y.; Lam, J. W. Y.; Lu, P.; Lu, Y.-W.; Wang, Z.-M.; Hu, R.-R.; Xie, N, ; R.-R.; Kwok, H. S. Zhang, Y.-M.; Sun, J.-Z.; Tang, B.-Z. Chem. Mater. 2012, 24, 1518.

    10. [10]

      Zhu, L.; Younes, A.; Yuan, Z.; Clark, R. J. J. Photochem. Photobiol. Chem. 2015, 311, 1.  doi: 10.1016/j.jphotochem.2015.05.008

    11. [11]

      Zhu, L.; Yuan, Z.; Simmons, J. T.; Sreenath, K. RSC Adv. 2014, 4, 20398.  doi: 10.1039/c4ra00354c

    12. [12]

      Zhang, G.-F.; Aldred, M. P.; Gong, W.-L.; Li, C.; Zhu. M.-Q. Chem. Commun. 2012, 48, 7711.  doi: 10.1039/c2cc33218c

    13. [13]

      Sun, Y.; Liang, X.-H.; Wei, S.; Fan, J.; Yang, X.-H. Spectrochim. Acta, Part A. 2012, 97, 352.  doi: 10.1016/j.saa.2012.06.017

    14. [14]

      Sun, Y.; Liang, X.-H.; Fan, J.; Han, Q. J. Lumin. 2013, 141, 93.  doi: 10.1016/j.jlumin.2013.02.053

    15. [15]

      Ottaviani, M. F.; Cossu, E.; Turro, N. J.; Tomalia, D. A. J. Am. Chem. Soc. 1995, 117, 4387.  doi: 10.1021/ja00120a022

    16. [16]

      Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.  doi: 10.1295/polymj.17.117

    17. [17]

      Zhang, Y.; Xu, M.-Y.; Jiang, T.-K.; Huang, W.-Z.; Wu, J.-Y. Chin. Chem. Lett. 2014, 25, 815.  doi: 10.1016/j.cclet.2014.02.004

    18. [18]

      Ji, Y.; Qian, Y. RSC Adv. 2014, 4, 58788.  doi: 10.1039/C4RA09184A

    19. [19]

      Scholl, M.; Kadlecova, Z.; Klok, H. A. Prog. Polym. Sci. 2009, 34, 24.  doi: 10.1016/j.progpolymsci.2008.09.001

    20. [20]

      Zeng, Y.; Li, Y.-Y.; Yuan, Z.; Li, Y. Acta Chim. Sinica 2009, 67, 2714 (in Chinese).
       

    21. [21]

      Yuan, Z.; Liang, F. Cur. Org. Chem. 2014, 18, 2016.  doi: 10.2174/1385272819666140514005617

    22. [22]

      Ji, Y.; Qian, Y. RSC Adv. 2014, 4, 25510.  doi: 10.1039/C4RA01758G

    23. [23]

      Grabchev, I.; Qian, X.-H.; Bojinov, V.; Xiao, Y.; Zhang, W. Polymer 2002, 43, 5731.  doi: 10.1016/S0032-3861(02)00417-2

    24. [24]

      Grabchev, I.; Chovelon, J. M.; Qian, X.-H. New J. Chem. 2003, 27, 337.  doi: 10.1039/b204727f

    25. [25]

      Grabchev, I.; Betcheva, R.; Bojinov, V.; Staneva, D. Eur. Polym. J. 2004, 40, 1249.  doi: 10.1016/j.eurpolymj.2004.01.002

    26. [26]

      Refat, M. S.; Teleb, S. M.; Grabchev, I. Spectrochim. Acta, Part A. 2005, 61, 205.  doi: 10.1016/j.saa.2004.04.017

    27. [27]

      Sali, S.; Grabchev, I.; Chovelon, J. M.; Ivanova, G. Spectrochim. Acta, Part A 2006, 65, 591.  doi: 10.1016/j.saa.2005.12.016

    28. [28]

      Grabchev, I.; Chovelon, J. M.; Petkov, C. Spectrochim. Acta, Part A 2008, 69, 100.  doi: 10.1016/j.saa.2007.03.014

    29. [29]

      Grabchev, I.; Bosch, P.; Staneva, D. J. Photochem. Photobiol. A 2011, 222, 288.  doi: 10.1016/j.jphotochem.2011.06.010

    30. [30]

      Staneva, D.; Bosch, P.; Asiri, A. M.; Taib, L. A.; Grabchev, I. Dyes Pigm. 2014, 105, 114.  doi: 10.1016/j.dyepig.2014.01.018

    31. [31]

      Yordanova, S.; Grabchev, I.; Stoyanov, S.; Petkov, I. J. Photochem. Photobiol. A: Chem. 2014, 283, 1.  doi: 10.1016/j.jphotochem.2014.03.002

    32. [32]

      Luo, X.-Y.; Qian, Y. Chin. J. Org. Chem. 2013, 33, 2423 (in Chinese).  doi: 10.6023/cjoc201305034
       

    33. [33]

      Sun, J.-F.; Qian, Y. Chin. J. Org. Chem. 2015, 35, 1104 (in Chinese).  doi: 10.6023/cjoc201411008
       

    34. [34]

      Guan, C.-F.; Qian, Y. Chin. J. Org. Chem. 2014, 34, 537 (in Chinese).  doi: 10.6023/cjoc201309005
       

    35. [35]

      Luo, M.-L.; Qian, Y. Chin. J. Org. Chem. 2012, 32, 1958 (in Chinese).  doi: 10.6023/cjoc1201141
       

    36. [36]

      Chen, H.-R.; Qian, Y. Dyes Pigm. 2015, 112, 317.  doi: 10.1016/j.dyepig.2014.07.005

    37. [37]

      Tao, Z.-Q.; Qian, Y. Chin. J. Org. Chem. 2014, 34, 2354 (in Chinese).  doi: 10.6023/cjoc201403065
       

    38. [38]

      Gelamo, E. L., Silva, C. H. T. P., Imasato, H., Tabak, M. Biochim. Biophys. Acta 2002, 1594, 84.  doi: 10.1016/S0167-4838(01)00287-4

    39. [39]

      Zhang, Y.; Qi, Z.-D.; Zheng, D.; Li, C.-H.; Liu, Y. Biol. Trace Elem. Res. 2009, 130, 172.  doi: 10.1007/s12011-009-8322-0

    40. [40]

      Zhang, C.-H.; Zang, S.-L.; Geng, B.; Tie, M.; Wu, L.-Y.; Su, X.; Feng, C. Chin. J. Anal. Sci. 2005, 21, 179 (in Chinese).  doi: 10.2116/analsci.21.179

    41. [41]

      Zheng, S.; Yuan, Z.; Zeng, Y.; Li, Y.-Y.; Li, Y. Acta Phys. Chim. Sin. 2008, 24, 1785 (in Chinese).
       

    42. [42]

      Jin, Y.-C.; Qian, Y. New J. Chem, 2015, 39, 2872.  doi: 10.1039/C4NJ02293A

    43. [43]

      Gu, P.-Y.; Lu, C.-J.; Hu, Z.-J.; Li, N.-J.; Zhao, T.-T.; Xu, Q.-F.; Xu, Q.-H.; Zhang, J.-D.; Lu, J.-M. J. Mater. Chem. C 2013, 1, 2599.  doi: 10.1039/c3tc00738c

    44. [44]

      Demasa, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 76, 991.

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    13. [13]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(0)
  • Abstract views(1983)
  • HTML views(349)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return