Citation: Hu Huayou, Li Guodong, Gu Ning, Ji Min. Synthesis of 3-Unsubstituted Indolizines from Electron Deficient Alkenes under Transition Metal Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 330-335. doi: 10.6023/cjoc201509044 shu

Synthesis of 3-Unsubstituted Indolizines from Electron Deficient Alkenes under Transition Metal Free Conditions

  • Received Date: 30 September 2015
    Available Online: 26 October 2015

    Fund Project: 国家自然科学基金(No. 21202058) (No. 21202058)江苏省高校重大(No. 13KJA150001) (No. 13KJA150001)中国博士后基金(Nos. 2012M511645, 2013T60483)资助项目 (Nos. 2012M511645, 2013T60483)

  • 3-Unsubstituted indolizine not only exhibits a variety of important biological activities, but also is a kind of important intermediate in organic synthesis. A transition metal free method for synthesizing 3-unsubstituted indolizines from pyridines, 2-chloroacetic acid and electron deficient alkenes has been invented in this paper. The designed products were obtained via oxidative dehydrogenation and decarboxylation reactions, and 2,2,6,6-tetramthyl-1-piperidinyloxy (TEMPO) was used as an oxidant. This method featured simple procedure, easy available starting materials and transition metal free conditions.
  • 加载中
    1. [1]

      [1] (a) Wang B.; Zhang C.-F. Chin. Wild Plant Resour. 2009, 28, 6 (in Chinese). (王冰, 张朝凤, 中国野生植物资源, 2009, 28, 6.) (b) Ewing, J.; Hughes, G. K.; Ritchie, E. W.; Taylor, C. Nature 1952, 169, 618. (c) Flitsch, W. In Comprehensive Heterocyclic Chemistry, Vol. 4, Eds.: Katritzki, A. R.; Rees, C. W., Pergamon, Oxford, 1984. (d) Swinbourne, F. T.; Hunt, J.; Klinkert, K. In Advances in Heterocyclic Chemistry, Vol. 23, Eds.: Katritzki, A. R.; Boulton, A. J., Academic Press, New York, 1978. (e) Reimann, E. Prog. Chem. Org. Nat. Prod. 2007, 88, 1. (f) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (g) Michael, J. P. Nat. Prod. Rep. 2003, 20, 458; (h) Snyder, S. A.; ElSohly, A. M.; Kontes, F. Angew. Chem., Int. Ed. 2010, 49, 9693.

    2. [2]

      [2] (a) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; Chikazawa, Y.; Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med. Chem. 1996, 39, 3636. (b) Ghosh, A. K.; Bilcer, G.; Schiltz, G. Synthesis 2001, 2203. (c) List, B.; Castello, C. Synlett 2001, 1687. (d) Sonnet, P.; Dallemagne, P.; Guillon, J.; Enguehard, C.; Stiebing, S.; Tanguy, J.; Bureau, R.; Rault, S.; Auvray, P.; Moslemi, S.; Sourdaine, P.; Seralini, G. E. Bioorg. Med. Chem. Lett. 2000, 8, 945. (e) Maryanoff, B. E.; Vaught, J. L.; Shank, R. P.; McComsey, D. F.; Costanzo, M. J.; Nortey, S. O. J. Med. Chem. 1990, 33, 2793. (f) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515. (g) Liao Z.-Y.; Zhang W.-N.; You L.; Guo W.; Zhang J.; Sheng C.-Q.; Yao J.-Z.; Shan X.-Y.; Wang W.-Y. Chin. J. Med. Chem. 2008, 18, 105 (in Chinese). (缪震元, 张万年, 游亮, 郭巍, 张晶, 盛春泉, 姚建忠, 车晓颖, 王文雅, 中国药物化学杂志, 2008, 18, 105.)

    3. [3]

      [3] (a) Vlahovici, A.; Andrei, M.; Druta, I. J. Lumin. 2002, 96, 279. (b) Vlahovici, A.; Druta, I.; Andrei, M.; Cotlet, M.; Dinica, R. J. Lumin. 1999, 82, 155. (c) Mitsumori, T.; Bendikov, M.; Dautel, O.; Wudl, F.; Shioya, T.; Sato, H.; Sato, Y. J. Am. Chem. Soc. 2004, 126, 16793. (d) Saeva, F. D.; Luss, H. R. J. Org. Chem. 1988, 53, 1804. (e) Sonnenschein, H.; Henrich, G.; Resch-Genger, U.; Schulz, B. Dyes Pigm. 2000, 46, 23. (f) Retaru, A. V.; Druta, L. D.; Deser, T.; Mueller, T. J. Helv. Chim. Acta 2005, 88, 1798. (g) Delattre, F.; Woisel, P.; Surpateanu, G.; Cazier, F.; Blach, P. Tetrahedron 2005, 61, 3939. (h) Mitsumori, T.; Campos, L. M.; Garcia-Garibay, M. A.; Wudl, F.; Sato, H.; Sato, Y. J. Mater. Chem. 2009, 19, 5826.

    4. [4]

      [4] Selected examples: (a) Park, C.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. (b) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. (c) Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V. ARKIVOC 2011, 76. (d) Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826. (e) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160. (f) Xia, J.; Wang, X.; You, S. J. Org. Chem. 2009, 74, 456. (g) Yang, Y.; Cheng, K.; Zhang, Y. Org. Lett. 2009, 11, 5606. (h) Yang, Y.; Chen, L.; Zhang, Z.; Zhang, Y. Org. Lett. 2011, 13, 1342. (i) Liu, B.; Qin, X.; Li, K.; Li, X.; Guo, Q.; Lan, J.; You, J. Chem. Eur. J. 2010, 16, 11836. (j) Huang, Y.; Song, F.; Wang, Z.; Xi, P.; Wu, N.; Wang, Z.; Lan, J.; You, J. Chem. Commun. 2012, 48, 2864. (k) Liu, B.; Wang, Z.; Wu, N.; Li, M.; You, J.; Lan, J. Chem. Eur. J. 2012, 18, 1599. (l) Ma, Y.; You, J.; Song, F. Chem. Eur. J. 2013, 19, 1189. (m) Zhao, B. Org. Biomol. Chem. 2012, 10, 7108. (n) Hu, H.; Liu, Y.; Zhong, H.; Zhu, Y.; Wang, C.; Ji, M. Chem. Asian J. 2012, 7, 884. (o) Hu, H.; Liu, Y.; Xu, J.; Kan, Y.; Wang, C.; Ji, M. RSC Adv. 2014, 4, 24389. (p) Hu, H.; Li, G.; Hu, W.; Liu, Y.; Wang, X.; Kan, Y.; Ji, M. Org. Lett. 2015, 17, 1114.

    5. [5]

      [5] (a) Dawood, K. M.; Ragab, E. A.; Khedr, N. A. J. Chin. Chem. Soc. (Taipei, Taiwan) 2009, 56, 1180. (b) Darwish, E. S. Molecules 2008, 13, 1066. (c) Kheder, N. A.; Darwish, E. S.; Dawood, K. M. Heterocycles 2009, 78, 177. (d) Shen, Y.-M.; Wang, B.-X.; Feng, Y.-Y.; Shen, Z.-Y.; Shen, J.; Li, C.; Hu, H.-W. Chem. J. Chin. Univ. 2006, 27, 651 (in Chinese). (沈永淼, 王炳祥, 冯玉英, 沈珠英, 沈健, 胡宏纹, 高等学校化学学报, 2006, 27, 651.) (e) Wang, B.-X.; Hu, H.-W. Chem. J. Chin. Univ. 2004, 25, 273 (in Chinese). (王炳祥, 胡宏纹, 高等学校化学学报, 2004, 25, 273.) (f) Tanaka, A.; Usui, T. Chem. Pharm. Bull. 1979, 27, 3078. (g) Tominaga, Y.; Hidaki, S.; Matsuda, Y.; Kobayashi, G.; Sakemi, K. Yakugaku Zasshi 1979, 99, 540. (h) Hu, H.; Feng, J.; Zhu, Y.; Gu, N.; Kan, Y. RSC Adv. 2012, 2, 8637. (i) Wang, C.; Hu, H.; Xu, J.; Kan, W. RSC Adv. 2015, 5, 41255.

    6. [6]

      [6] Zhang, L.; Liang, F.; Sun, L.; Hu, Y.; Hu, H. Synthesis 2000, 1733.

    7. [7]

      [7] (a) Liu, Y.; Hu, H.; Zhang, Y.; Hu, H.; Xu, J. Org. Biomol. Chem. 2010, 8, 4921. (b) Hu, H.; Shi, K.; Hou, R.; Zhang, Z.; Zhu, Y.; Zhou, J. Synthesis 2010, 4007. (c) Hu, H.; Ma, K. Crystallogr. Rep. 2010, 55, 1211.

    8. [8]

      [8] (d) Liu, Y.; Hu, H.; Su, X.; Sun, J.; Cao, C.; Shi, Y. Eur. J. Org. Chem. 2013, 2020. (e) Sun, J.; Wang, F.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 3992. (f) Li, G.; Hu, H.; Kan, Y.; Ma, K. Chin. J. Org. Chem. 2014, 34, 903 (in Chinese). (李国栋, 胡华友, 阚玉和, 马奎蓉, 有机化学, 2014, 34, 903.) (g) Wang, F.; Shen, Y.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 9556. (h) Sun, J.; Hu, H.; Wang, F.; Wu, H.; Liu, Y. RSC Adv. 2014, 4, 36498.

    9. [9]

      [9] Selctcted reviews for TEMPO as oxidant or catalyst for oxidation: (a) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037. (b) Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116. (c) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851. (d) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227. (e) Zhan, B.; Thompson, A. Tetrahedron 2004, 60, 2917. (f) Murarka, S.; Wertz, S.; Studer, A. Chimia 2012, 66, 413.

    10. [10]

      [10] Shi, F.; Zhang, Y.; Lu, Z.; Zhu, X.; Kan, W.; Wang, X.; Hu, H. Synthesis 2016, 48, 413.

    11. [11]

      [11] Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73, 4750

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    8. [8]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    15. [15]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(0)
  • Abstract views(663)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return