Citation: Zhang Bianxiang, Yang Lihua, Shi Ruixue, Kang Yongqiang. Synthesis of Heterocyclic Aromatic Sulfides under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 352-357. doi: 10.6023/cjoc201509026 shu

Synthesis of Heterocyclic Aromatic Sulfides under Microwave Irradiation

  • Corresponding author: Zhang Bianxiang, 
  • Received Date: 21 September 2015
    Available Online: 14 October 2015

    Fund Project: 山西省科技创新项目(No. 2014101011) (No. 2014101011)山西大学本科生科研训练(No. 2014013)资助项目 (No. 2014013)

  • The reaction of the thiolazole compounds with aryl iodide resulted in a series of aryl thioether compounds under microwave irradiation. It showed that the yield of target product was 88% when the reaction was carried out under microwave (30 W) heating for 15 min in N,N-dimethylformamide (DMF). The target products using microwave response and oil bath heating were tracked separately by high performance liquid chromatography (HPLC) analysis under the same conditions. The results showed that the method of microwave irradiation for the preparation of aryl sulfide was simple, efficient, time-saving and less by-products. It is expected to become an efficient, gentle and environmentally friendly synthetic method of heterocyclic aryl sulfides.
  • 加载中
    1. [1]

      [1] Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G. Org. Lett. 2014, 16, 50.

    2. [2]

      [2] Inomata, H.; Toh, A.; Mitsui, T.; Fukuzawa, S. Tetrahedron Lett. 2013, 54, 4729.

    3. [3]

      [3] Varun, B.; Prabhu, K. J. Org. Chem. 2014, 79, 9655.

    4. [4]

      [4] Alves, D.; Lara, R.; Contreira, M.; Radatz, C.; Duarte, L.; Perin, G. Tetrahedron Lett. 2012, 53, 3364.

    5. [5]

      [5] (a) Azam, M.; Suresh, B. Sci. Pharm. 2012, 80, 789. (b) Pejin, B.; Iodice, C.; Tommonaro, G. J. Nat. Prod. 2008, 71, 1850. (c) Wei, H.; Yang, G. Bioorg. Med. Chem. 2006, 14, 8280. (d) Gangjee, A.; Zeng, Y.; Talreja, T. J. Med. Chem. 2007, 50, 3046.

    6. [6]

      [6] Xiao, S.; Zhu, J.; Mu, X. Chin. J. Org. Chem. 2013, 33, 1668 (in Chinese). (肖尚友, 朱俊, 穆小静, 有机化学, 2013, 33, 1668.)

    7. [7]

      [7] Qiao, Z. J.; Liu, H.; Xiao, X.; Fu, X. Org. Lett. 2013, 15, 2594.

    8. [8]

      [8] Wang, B.; Graskemper, J. W.; Qin, L.; DiMagno, S. Angew. Chem., Int. Engl. 2010, 49, 4079.

    9. [9]

      [9] Liu, K.; Ou, H.; Shi, X. J. Org. Chem. 2014, 4, 681.

    10. [10]

      [10] Kumat, S.; Engman, L. J. Org. Chem. 2006, 71, 5400.

    11. [11]

      [11] Wang, D.; Yu, X.; Zhao, K.; Li, L.; Ding, Y. Tetrahedron Lett. 2014, 55, 5739.

    12. [12]

      [12] Taniguchi, N. J. Org. Chem. 2006, 71, 7874.

    13. [13]

      [13] Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.

    14. [14]

      [14] Luo, P.; Yu, M.; Tang, R.; Zhong, P.; Li, J. Tetrahedron Lett. 2009, 50, 1066.

    15. [15]

      [15] Sekar, R.; Srinivasan, M.; Marcelis, A.; Sambandam, A. Tetrahedron Lett. 2011, 52, 3347.

    16. [16]

      [16] He, Z.; Luo, F.; Li, Y.; Zhu, G. Tetrahedron Lett. 2013, 54, 5907.

    17. [17]

      [17] Mondal, J.; Borah, P.; Modak, A.; Zhao, Y. L.; Bhaumik, A. Org. Process Res. Dev. 2014, 18, 257.

    18. [18]

      [18] Zhang, X.; Zeng, W.; Yang, Y.; Huang, H.; Liang, Y. Org. Lett. 2014, 16, 876.

    19. [19]

      [19] Song, H.; Leninger, M.; Lee, N.; Liu, P. H. Org. Lett. 2013, 15, 4854.

    20. [20]

      [20] Varala, R.; Ramu, E.; Alam, M.; Adapa, S. Chem. Lett. 2004, 33, 1614.

    21. [21]

      [21] Jalalian, N.; Petersen, T.; Olofssn, B. Chem. Eur. J. 2012, 18, 14140.

    22. [22]

      [22] He, G.; Huang, Y.; Tong, Y.; Zhang, J.; Zhao, D.; Zhou, S.; Han, S. Tetrahedron Lett. 2013, 54, 5318.

    23. [23]

      [23] Zhang, B.; Chen, K.; Yang, L. Chin. J. Org. Chem. 2015, 35, 905 (in Chinese). (张变香, 陈凯, 杨丽花, 有机化学, 2015, 35, 905.)

    24. [24]

      [24] Ivelina, M.; Charlotte, A.; Naomi, S. J. Org. Chem. 2014, 79, 1947.

    25. [25]

      [25] Natividad, H.; Maria, S.; Ana, N. J. Agric. Food Chem. 2015, 63, 3681.

    26. [26]

      [26] Prilezhaeva, E. N.; Shmonina, L. I. Khimicheskaya 1969, 670.

    27. [27]

      [27] Michitada, S.; Teruya, A.; Watanabe, Y. Yakugaku Zassh 1965, 85, 962.

    28. [28]

      [28] Murru, S.; Ghosh, H.; Sahoo, K. S.; Patel, K. B. Org. Lett. 2009, 11, 4254.

    29. [29]

      [29] Prasad, D.; Naidu, A.; Sekar, G. Tetrahedron Lett. 2009, 50, 1411.

    30. [30]

      [30] Illuminati, G.; Gilman, H. J. Am. Chem. Soc. 1949, 71, 3349.

    31. [31]

      [31] Fukuzawa, S.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K.; Tetrahedron Lett. 2009, 50, 2374.

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(0)
  • Abstract views(748)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return