Citation: Yuan Qianjia, Zhang Wanbin. Applications of Phosphoramidite Ligands in Ir-Catalyzed Asymmetric Hydrogenation Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 274-282. doi: 10.6023/cjoc201509016 shu

Applications of Phosphoramidite Ligands in Ir-Catalyzed Asymmetric Hydrogenation Reactions

  • Corresponding author: Zhang Wanbin, 
  • Received Date: 13 September 2015
    Available Online: 13 October 2015

    Fund Project: 国家自然科学基金(No. 21232004) (No. 21232004)上海市优秀学科带头人(No. 14XD1402300)资助项目. (No. 14XD1402300)

  • Phosphoramidites, as a class of privileged chiral ligands, are suitable for different types of reactions, such as catalytic asymmetric hydrogenation, catalytic asymmetric allylic substitution, catalytic asymmetric Diels-Alder reaction and so on. Catalytic asymmetric hydrogenation reactions are some of the most important reactions in industry. In this review recent advances and applications of phosphoramidite ligands in Ir-catalyzed asymmetric hydrogenation of enamides and their derivatives, unfunctionalized enamines, imines and heteroaromatic compounds are discussed.
  • 加载中
    1. [1]

      [1] (a) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008. (b) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Chin. J. Org. Chem. 2005, 25, 634 (in Chinese). (卢胜梅, 韩秀文, 周永贵, 有机化学, 2005, 25, 634.) (c) de Vries, J. G.; Elsevier, C. J. Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007. (d) Ma, Y.-H.; Zhang, Y.-J.; Zhang, W. Chin. J. Org. Chem. 2007, 27, 289 (in Chinese). (马元辉, 张勇健, 张万斌, 有机化学, 2007, 27, 289.) (e) Blaser, H. U.; Federsel. H.-J. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, 2nd ed., Wiley-VCH, Weinheim, 2010. (f) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713.

    2. [2]

      [2] (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (b) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258. (c) Zhang, W.; Liu, D. In Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, Chapter 7, Wiley-VCH, Weinheim, 2010. (d) Kazmaier, U. Transition Meatl Catalyzed Enantioselective Allylic Substitution in Organic Synthesis, Springer: New York, 2012. (e) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.

    3. [3]

      [3] (a) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (b) Kobayashi, S.; Jorgenson, K. A. Cycloaddition Reaction in Organic Synthesis, New York, Wiley-VCH, 2002. (c) Desimoni, G.; Faita, G.; Jorgenson, K. A. Chem. Rev. 2006, 106, 3561.

    4. [4]

      [4] (a) Porter, M. J.; Skidmore, J. Chem. Commun. 2000, 36, 1215. (b) Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603.

    5. [5]

      [5] (a) RajanBabu, T. V. Chem. Rev. 2003, 103, 2845. (b) Jia, X.; Wang, Z.; Xia, C.; Ding, K. C. Chin. J. Org. Chem. 2013, 33, 1369 (in Chinese) (贾肖飞, 王正, 夏春谷, 丁奎岭, 有机化学, 2013, 33, 1369.)

    6. [6]

      [6] (a) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691. (b) Teichert, J. F.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486. (c) Zhang, Z.; Xie, F.; Yang, B.; Yu, H.; Zhang, W. Chin. J. Org. Chem. 2011, 31, 429 (in Chinese). (张振锋, 谢芳, 杨波, 余焓, 张万斌, 有机化学, 2011, 31, 429.) (d) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH: Weinheim, 2011.

    7. [7]

      [7] Hulst, R.; de Vries, N. K.; Feringa, B. L. Tetrahedron: Asymmetry 1994, 5, 699.

    8. [8]

      [8] de Veris, A. H. M.; Meetsma, A.; Feringa, B. L. Angew. Chem. Int. Ed. Engl. 1996, 35, 2374.

    9. [9]

      [9] (a) Zhang, H.; Fang, F.; Xie, F.; Yu, H.; Yang, G.; Zhang, W. Tetrahedron Lett. 2010, 51, 3119. (b) Yang, B.; Xie, F.; Yu, H.; Shen, K.; Ma, Z.; Zhang, W. Tetrahedron 2011, 67, 6197. (c) Yu, H.; Xie, F.; Ma, Z.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2012, 10, 5137. (d) Yu, H.; Xie, F.; Ma, Z.; Liu, Y.; Zhang, W. Adv. Synth. Catal. 2012, 354, 1941.

    10. [10]

      [10] (a) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; de Vries, J. G. Acc. Chem. Res. 2007, 40, 1267. (b) de Vries, A. H. M.; de Vries, J. G. Platinum Metals Rev. 2006, 50, 54.

    11. [11]

      [11] Giacomina, F.; Meetsma, A.; Panella, L.; Lefort, L.; de Vries, A. H. M.; de Vries, J. G. Angew. Chem., Int. Ed. 2007, 46, 1497.

    12. [12]

      [12] (a) Roseblade, S. J.; Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402. (b) Zhang, J.; Yang, D.; Long, Y. Chin. J. Org. Chem. 2009, 29, 835 (in Chinese). (张俊芳, 杨定乔, 龙玉华, 有机化学, 2009, 29, 835.)

    13. [13]

      [13] Marie, P.; Deblon, S.; Breher, F.; Geier, J.; Böhler, C.; Rüegger, H.; Schönberg, H.; Grützmacher, H. Chem. Eur. J. 2004, 10, 4198.

    14. [14]

      [14] Broady, S. D.; Martin, D. M. G.; Lennon, I. C.; Ramsden, J. A.; Muir, J. C. WO 2006067412, 2006 [Chem. Abstr. 2006, 145, 103874].

    15. [15]

      [15] Erre, G.; Enthaler, S.; Junge, K.; Addis, D.; Beller, M. Adv. Synth. Catal. 2009, 351, 1437.

    16. [16]

      [16] Erre, G.; Junge, K.; Enthaler, S; Addis, D.; Michalik, D.; Spannenberg, A.; Beller, M. Chem. Asian J. 2008, 3, 887.

    17. [17]

      [17] Enthaler, S.; Erre, G.; Junge, K.; Schröder, K.; Addis, D.; Michalik, D.; Hapke, M.; Redkin, D.; Beller, M. Eur. J. Org. Chem. 2008, 3352.

    18. [18]

      [18] Lee, N. E.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5985.

    19. [19]

      [19] Hou, G.-H.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 11774.

    20. [20]

      [20] Hou, G.-H.; Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 1366.

    21. [21]

      [21] Yan, P.-C.; Xie, J.-H.; Hou, G.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 3243.

    22. [22]

      [22] Yan, P.-C.; Xie, J.-H.; Zhou, Q.-L. Chin. J. Chem. 2010, 28, 1736.

    23. [23]

      [23] (a) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425. (b) Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74, 2780.

    24. [24]

      [24] Blaser, H. U.; Buser, H. P.; Losers, K.; Hanreich, R.; Jalett, H. P.; Jelsch, E.; Pugin, B.; Schneider, H. D.; Splinder, F.; Wagmann, A. Chimia 1999, 53, 275.

    25. [25]

      [25] Mršić, N.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. J. Am. Chem. Soc. 2009, 131, 8358.

    26. [26]

      [26] Hou, G.; Tao, R.; Sun, Y.; Zhang, X.; Gosselin, F. J. Am. Chem. Soc. 2010, 132, 2124.

    27. [27]

      [27] Xie, J.-H.; Yan, P.-C.; Zhang, Q.-Q.; Yuan, K.-X.; Zhou, Q.-L. ACS Catal. 2012, 2, 561.

    28. [28]

      [28] Hou, G.; Gosselin, F.; Li, W.; McWilliams, C.; Sun, Y.; Weisel, M.; O'Shea, P. D.; Chen, C.-Y.; Davies, I. W.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 9882.

    29. [29]

      [29] Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2011, 112, 2557.

    30. [30]

      [30] Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.

    31. [31]

      [31] Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal. 2004, 346, 909.

    32. [32]

      [32] Lam, K. H.; Lu, L.; Feng, L.; Fan, Q.-H.; Lam, F. L.; Lo, W.-H.; Chan, A. S. C. Adv. Synth. Catal. 2005, 347, 1755.

    33. [33]

      [33] Reetz, M. T.; Li, X. Chem. Commun. 2006, 42, 2159.

    34. [34]

      [34] Wang, D.-W.; Zeng, W; Zhou, Y.-G. Tetrahedron: Asymmetry 2007, 18, 1103.

    35. [35]

      [35] Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683.

    36. [36]

      [36] Mršić, N.; Lefort, L.; Boogers, J. A. F.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Adv. Synth. Catal. 2008, 350, 1081.

    37. [37]

      [37] Mršić, N.; Jerphagnon, T.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Adv. Synth. Catal. 2009, 351, 2549.

    38. [38]

      [38] (a) Eggenstein, M.; Thomas, A.; Theuerkauf, J.; Franciò, G.; Leitner, W. Adv. Synth. Catal. 2009, 351, 725. (b) Hou, C.-J.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. Org. Lett. 2012, 14, 3554.

    39. [39]

      [39] (a) Bess, E. N.; Sigman, M. S. Org. Lett. 2013, 15, 646. (b) Biosca, M.; Paptchikhine, A.; Pàmies, O.; Andersson, P. G.; Diéguez, M. Chem. Eur. J. 2015, 21, 3455.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    17. [17]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(0)
  • Abstract views(960)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return