Citation: Chen Xuewei, Xin Yujuan, Liu Qing, Lan Zhili. Application of Bifunctional (Thio)ureas with Auxiliary in Asymmetric Organocatalysis[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 306-314. doi: 10.6023/cjoc201508029 shu

Application of Bifunctional (Thio)ureas with Auxiliary in Asymmetric Organocatalysis

  • Corresponding author: Chen Xuewei, 
  • Received Date: 30 August 2015
    Available Online: 18 September 2015

    Fund Project: 国家自然科学基金(No. 20906029)资助项目 (No. 20906029)

  • Chiral bifunctional (thio)ureas, which are made up of (thio)urea group, nucleophilic activation group and auxiliary, have attracted widespread attention in asymmetric organocatalysis research nowadays because of their easy control structure and excellent catalytic performance. The introduction of the activation group, which can greatly influence the catalytic performance of the catalyst, has become an important and concern research field for the catalyst design, while the introduction of suitable auxiliary can also be used to control and optimize catalytic performance, and become an important supplementary method. However, up to now, there is no systematical review exclusively on utilization of auxiliary strategy for the construction of chiral bifunctional (thio)ureas. In this paper, the research progress of the construction of chiral bifunctional (thio)ureas based on tunable achiral and chiral auxiliaries in recent years is reviewed. These catalysts can be successfully applied in a diverse variety of highly enantioselective transformations providing a wide range of versatile organic compounds. The influence of several factors in the auxiliaries, such as steric hindrance, chiral environment, electronic effect and hydrogen bond donor, on the catalytic performance is described. Besides, an outlook for future development of auxiliaries to construct bifunctional (thio)ureas is given.
  • 加载中
    1. [1]

      [1] (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520. (b) Connon, S. J. Chem. Eur. J. 2006, 12, 5418. (c) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.

    2. [2]

      [2] Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.

    3. [3]

      [3] Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.

    4. [4]

      [4] (a) Wu, Q.-H.; Gao, Y.-J.; Li, Z.; Wang, J.-M.; Wang, C.; Ma, J.-J.; Song, S.-J. Chin. J. Org. Chem. 2007, 27, 1491 (in Chinese). (吴秋华, 高勇军, 李芝, 王俊敏, 王春, 马晶军, 宋双居, 有机化学, 2007, 27, 1491.) (b) Miyabe, H.; Takemoto, Y. Bull. Chem. Soc. Jpn. 2008, 81, 785. (c) Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. (d) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593. (e) Sohtome, Y.; Nagasawa, K. Synlett 2010, 1. (f) Chai, Z.; Zhao, G. Catal. Sci. Technol. 2012, 2, 29. (g) Lu, L.-Q.; An, X.-L.; Chen, J.-R.; Xiao, W.-J. Synlett 2012, 490. (h) Hou, X.-H.; Ma, Z.-W.; Wang, J.-L.; Liu, H.-M. Chin. J. Org. Chem. 2014, 34, 1509 (in Chinese). (侯学会, 马志伟, 王建玲, 刘宏民, 有机化学, 2014, 34, 1509.)

    5. [5]

      [5] (a) Connon, S. J. Chem. Commun. 2008, 2499. (b) Siau, W. Y.; Wang, J. Catal. Sci. Technol. 2011, 1, 1298. (c) Tsakos, M.; Kokotos, C. G. Tetrahedron 2013, 69, 10199. (d) Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem. 2013, 11, 7051. (e) Zhang, Z.-G.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.

    6. [6]

      [6] (a) Zhang, Z.-H.; Dong, X.-Q.; Teng, H.-L.; Tao, H.-Y.; Wang, C.-J. Chin. Sci. Bull. 2009, 54, 3407 (in Chinese). (张志海, 董秀琴, 滕怀龙, 陶海燕, 王春江, 科学通报, 2009, 54, 3407.) (b) Fang, X.; Wang, C.-J. Chem. Commun. 2015, 51, 1185. (c) Narayanaperumal, S.; Rivera, D. G.; Silva, R. C.; Paixão, M. W. ChemCatChem 2013, 5, 2756.

    7. [7]

      [7] Lippert, K. M.; Hof, K.; Gerbig, D.; Ley, D.; Hausmann, H.; Guenther, S.; Schreiner, P. R. Eur. J. Org. Chem. 2012, 5919.

    8. [8]

      [8] Wei, Q.; Gong, L.-Z. Org. Lett. 2010, 12, 1008.

    9. [9]

      [9] He, T.; Qian, J.-Y.; Song, H.-L.; Wu, X.-Y. Synlett 2009, 3195.

    10. [10]

      [10] Ban, S.-R.; Zhu, X.-X.; Zhang, Z.-P.; Li, Q.-S. Eur. J. Org. Chem. 2013, 2977.

    11. [11]

      [11] Yu, L.; Li, P.-F. Tetrahedron Lett. 2014, 55, 3697.

    12. [12]

      [12] Li, J.; Yang, G.-X.; Cui, Y.-C. J. Appl. Polym. Sci. 2011, 121, 1506.

    13. [13]

      [13] Li, J.; Yang, G.-X.; Qin, Y.-Y.; Yang, X.-R.; Cui, Y.-C. Tetrahedron: Asymmetry 2011, 22, 613.

    14. [14]

      [14] Miura, T.; Nishida, S.; Masuda, A.; Tada, N.; Itoh, A. Tetrahedron Lett. 2011, 52, 4158.

    15. [15]

      [15] Tuchman-Shukron, L.; Miller, S, J.; Portnoy, M. Chem. Eur. J. 2012, 18, 2290.

    16. [16]

      [16] (a) Tsogoeva, S.-B.; Wei, S. Chem. Commun. 2006, 1451. (b) Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Adv. Synth. Catal. 2006, 348, 826.

    17. [17]

      [17] Wang, Y.-F.; Zhang, W.; Luo, S.-P.; Li, B.-L.; Xia, A.-B.; Zhong, A.-G.; Xu, D.-Q. Chem. Asian J. 2009, 4, 1834.

    18. [18]

      [18] Rao, K. S.; Trivedi, R.; Kantam, M. L. Synlett 2015, 221.

    19. [19]

      [19] Durmaz, M.; Sirit, A. Tetrahedron: Asymmetry 2013, 24, 1443.

    20. [20]

      [20] Lalonde, M. P.; Chen, Y.-G.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366.

    21. [21]

      [21] Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 1891.

    22. [22]

      [22] Kokotos, C. G.; Kokotos, G. Adv. Synth. Catal. 2009, 351, 1355.

    23. [23]

      [23] Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Org. Lett. 2007, 9, 923.

    24. [24]

      [24] Lu, A.-D.; Gao, P.; Wu, Y.; Wang, Y.-M.; Zhou, Z.-H.; Tang, C.-C. Org. Biomol. Chem. 2009, 7, 3141.

    25. [25]

      [25] Pu, X.-W.; Peng, F.-Z.; Zhang, H.-B.; Shao, Z.-H. Tetrahedron 2010, 66, 3655.

    26. [26]

      [26] Lu, A.-D.; Hu, K.-L.; Wang, Y.-M.; Song, H.-B.; Zhou, Z.-H.; Fang, J.-X.; Tang, C.-C. J. Org. Chem. 2012, 77, 6208.

    27. [27]

      [27] Jiang, X.-X.; Zhang, Y.-F.; Chan, A. S. C.; Wang, R. Org. Lett. 2009, 11, 153.

    28. [28]

      [28] Jiang, X.-X.; Cao, Y.-M.; Wang, Y.-Q.; Liu, L.-P.; Shen, F.-F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.

    29. [29]

      [29] Li, P.-F.; Wang, Y.-C.; Liang, X.-M.; Ye, J.-X. Chem. Commun. 2008, 44, 3302.

    30. [30]

      [30] Tan, B.; Candeias, N. R.; Barbas, C. F., III Nat. Chem. 2011, 3, 473.

    31. [31]

      [31] Ma, Z.-W.; Liu, Y.-X.; Zhang, W.-J.; Tao, Y.; Zhu, Y.; Tao, J.-C.; Tang, M. S. Eur. J. Org. Chem. 2011, 6747.

    32. [32]

      [32] Song, Z.-T.; Zhang, T.; Du, H.-L.; Ma, Z.-W.; Zhang, C.-H.; Tao, J.-C. Chirality 2014, 26, 121.

    33. [33]

      [33] Tzeng, Z.-H.; Chen, H.-Y.; Huang, C.-T.; Chen, K.-M. Tetrahedron Lett. 2008, 49, 4134.

    34. [34]

      [34] Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Xue, Z.-Y.; Teng, H.-L. J. Am. Chem. Soc. 2008, 130, 8606.

    35. [35]

      [35] Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Wu, X.-J. Chem. Commun. 2008, 44, 1431.

    36. [36]

      [36] Jones, C. R.; Pantoş, G. D.; Morrison, A. J.; Smith, M. D. Angew. Chem., Int. Ed. 2009, 48, 7391.

    37. [37]

      [37] Deng, H.-P.; Shi, M. Eur. J. Org. Chem. 2012, 183.

  • 加载中
    1. [1]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    9. [9]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    17. [17]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(1166)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return