Citation: Chen Xuewei, Xin Yujuan, Liu Qing, Lan Zhili. Application of Bifunctional (Thio)ureas with Auxiliary in Asymmetric Organocatalysis[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 306-314. doi: 10.6023/cjoc201508029 shu

Application of Bifunctional (Thio)ureas with Auxiliary in Asymmetric Organocatalysis

  • Corresponding author: Chen Xuewei, 
  • Received Date: 30 August 2015
    Available Online: 18 September 2015

    Fund Project: 国家自然科学基金(No. 20906029)资助项目 (No. 20906029)

  • Chiral bifunctional (thio)ureas, which are made up of (thio)urea group, nucleophilic activation group and auxiliary, have attracted widespread attention in asymmetric organocatalysis research nowadays because of their easy control structure and excellent catalytic performance. The introduction of the activation group, which can greatly influence the catalytic performance of the catalyst, has become an important and concern research field for the catalyst design, while the introduction of suitable auxiliary can also be used to control and optimize catalytic performance, and become an important supplementary method. However, up to now, there is no systematical review exclusively on utilization of auxiliary strategy for the construction of chiral bifunctional (thio)ureas. In this paper, the research progress of the construction of chiral bifunctional (thio)ureas based on tunable achiral and chiral auxiliaries in recent years is reviewed. These catalysts can be successfully applied in a diverse variety of highly enantioselective transformations providing a wide range of versatile organic compounds. The influence of several factors in the auxiliaries, such as steric hindrance, chiral environment, electronic effect and hydrogen bond donor, on the catalytic performance is described. Besides, an outlook for future development of auxiliaries to construct bifunctional (thio)ureas is given.
  • 加载中
    1. [1]

      [1] (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520. (b) Connon, S. J. Chem. Eur. J. 2006, 12, 5418. (c) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.

    2. [2]

      [2] Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.

    3. [3]

      [3] Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.

    4. [4]

      [4] (a) Wu, Q.-H.; Gao, Y.-J.; Li, Z.; Wang, J.-M.; Wang, C.; Ma, J.-J.; Song, S.-J. Chin. J. Org. Chem. 2007, 27, 1491 (in Chinese). (吴秋华, 高勇军, 李芝, 王俊敏, 王春, 马晶军, 宋双居, 有机化学, 2007, 27, 1491.) (b) Miyabe, H.; Takemoto, Y. Bull. Chem. Soc. Jpn. 2008, 81, 785. (c) Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. (d) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593. (e) Sohtome, Y.; Nagasawa, K. Synlett 2010, 1. (f) Chai, Z.; Zhao, G. Catal. Sci. Technol. 2012, 2, 29. (g) Lu, L.-Q.; An, X.-L.; Chen, J.-R.; Xiao, W.-J. Synlett 2012, 490. (h) Hou, X.-H.; Ma, Z.-W.; Wang, J.-L.; Liu, H.-M. Chin. J. Org. Chem. 2014, 34, 1509 (in Chinese). (侯学会, 马志伟, 王建玲, 刘宏民, 有机化学, 2014, 34, 1509.)

    5. [5]

      [5] (a) Connon, S. J. Chem. Commun. 2008, 2499. (b) Siau, W. Y.; Wang, J. Catal. Sci. Technol. 2011, 1, 1298. (c) Tsakos, M.; Kokotos, C. G. Tetrahedron 2013, 69, 10199. (d) Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem. 2013, 11, 7051. (e) Zhang, Z.-G.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.

    6. [6]

      [6] (a) Zhang, Z.-H.; Dong, X.-Q.; Teng, H.-L.; Tao, H.-Y.; Wang, C.-J. Chin. Sci. Bull. 2009, 54, 3407 (in Chinese). (张志海, 董秀琴, 滕怀龙, 陶海燕, 王春江, 科学通报, 2009, 54, 3407.) (b) Fang, X.; Wang, C.-J. Chem. Commun. 2015, 51, 1185. (c) Narayanaperumal, S.; Rivera, D. G.; Silva, R. C.; Paixão, M. W. ChemCatChem 2013, 5, 2756.

    7. [7]

      [7] Lippert, K. M.; Hof, K.; Gerbig, D.; Ley, D.; Hausmann, H.; Guenther, S.; Schreiner, P. R. Eur. J. Org. Chem. 2012, 5919.

    8. [8]

      [8] Wei, Q.; Gong, L.-Z. Org. Lett. 2010, 12, 1008.

    9. [9]

      [9] He, T.; Qian, J.-Y.; Song, H.-L.; Wu, X.-Y. Synlett 2009, 3195.

    10. [10]

      [10] Ban, S.-R.; Zhu, X.-X.; Zhang, Z.-P.; Li, Q.-S. Eur. J. Org. Chem. 2013, 2977.

    11. [11]

      [11] Yu, L.; Li, P.-F. Tetrahedron Lett. 2014, 55, 3697.

    12. [12]

      [12] Li, J.; Yang, G.-X.; Cui, Y.-C. J. Appl. Polym. Sci. 2011, 121, 1506.

    13. [13]

      [13] Li, J.; Yang, G.-X.; Qin, Y.-Y.; Yang, X.-R.; Cui, Y.-C. Tetrahedron: Asymmetry 2011, 22, 613.

    14. [14]

      [14] Miura, T.; Nishida, S.; Masuda, A.; Tada, N.; Itoh, A. Tetrahedron Lett. 2011, 52, 4158.

    15. [15]

      [15] Tuchman-Shukron, L.; Miller, S, J.; Portnoy, M. Chem. Eur. J. 2012, 18, 2290.

    16. [16]

      [16] (a) Tsogoeva, S.-B.; Wei, S. Chem. Commun. 2006, 1451. (b) Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Adv. Synth. Catal. 2006, 348, 826.

    17. [17]

      [17] Wang, Y.-F.; Zhang, W.; Luo, S.-P.; Li, B.-L.; Xia, A.-B.; Zhong, A.-G.; Xu, D.-Q. Chem. Asian J. 2009, 4, 1834.

    18. [18]

      [18] Rao, K. S.; Trivedi, R.; Kantam, M. L. Synlett 2015, 221.

    19. [19]

      [19] Durmaz, M.; Sirit, A. Tetrahedron: Asymmetry 2013, 24, 1443.

    20. [20]

      [20] Lalonde, M. P.; Chen, Y.-G.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366.

    21. [21]

      [21] Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 1891.

    22. [22]

      [22] Kokotos, C. G.; Kokotos, G. Adv. Synth. Catal. 2009, 351, 1355.

    23. [23]

      [23] Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Org. Lett. 2007, 9, 923.

    24. [24]

      [24] Lu, A.-D.; Gao, P.; Wu, Y.; Wang, Y.-M.; Zhou, Z.-H.; Tang, C.-C. Org. Biomol. Chem. 2009, 7, 3141.

    25. [25]

      [25] Pu, X.-W.; Peng, F.-Z.; Zhang, H.-B.; Shao, Z.-H. Tetrahedron 2010, 66, 3655.

    26. [26]

      [26] Lu, A.-D.; Hu, K.-L.; Wang, Y.-M.; Song, H.-B.; Zhou, Z.-H.; Fang, J.-X.; Tang, C.-C. J. Org. Chem. 2012, 77, 6208.

    27. [27]

      [27] Jiang, X.-X.; Zhang, Y.-F.; Chan, A. S. C.; Wang, R. Org. Lett. 2009, 11, 153.

    28. [28]

      [28] Jiang, X.-X.; Cao, Y.-M.; Wang, Y.-Q.; Liu, L.-P.; Shen, F.-F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.

    29. [29]

      [29] Li, P.-F.; Wang, Y.-C.; Liang, X.-M.; Ye, J.-X. Chem. Commun. 2008, 44, 3302.

    30. [30]

      [30] Tan, B.; Candeias, N. R.; Barbas, C. F., III Nat. Chem. 2011, 3, 473.

    31. [31]

      [31] Ma, Z.-W.; Liu, Y.-X.; Zhang, W.-J.; Tao, Y.; Zhu, Y.; Tao, J.-C.; Tang, M. S. Eur. J. Org. Chem. 2011, 6747.

    32. [32]

      [32] Song, Z.-T.; Zhang, T.; Du, H.-L.; Ma, Z.-W.; Zhang, C.-H.; Tao, J.-C. Chirality 2014, 26, 121.

    33. [33]

      [33] Tzeng, Z.-H.; Chen, H.-Y.; Huang, C.-T.; Chen, K.-M. Tetrahedron Lett. 2008, 49, 4134.

    34. [34]

      [34] Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Xue, Z.-Y.; Teng, H.-L. J. Am. Chem. Soc. 2008, 130, 8606.

    35. [35]

      [35] Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Wu, X.-J. Chem. Commun. 2008, 44, 1431.

    36. [36]

      [36] Jones, C. R.; Pantoş, G. D.; Morrison, A. J.; Smith, M. D. Angew. Chem., Int. Ed. 2009, 48, 7391.

    37. [37]

      [37] Deng, H.-P.; Shi, M. Eur. J. Org. Chem. 2012, 183.

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    4. [4]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    5. [5]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

Metrics
  • PDF Downloads(0)
  • Abstract views(1048)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return