Citation: Wang Wei, Mao Shuang, Peng Dan, Li Laicai. Investigation on the Mechanism for N-Methylindole and Keto Ester Catalyzed by InX3 (X=F, Br)[J]. Chinese Journal of Organic Chemistry, ;2016, 36(3): 613-621. doi: 10.6023/cjoc201508026 shu

Investigation on the Mechanism for N-Methylindole and Keto Ester Catalyzed by InX3 (X=F, Br)

  • Corresponding author: Li Laicai, 
  • Received Date: 26 August 2015
    Available Online: 21 October 2015

    Fund Project: 四川省教育厅自然科学基金(No. 13ZA0150) (No. 13ZA0150)四川省科技厅自然科学基金(No. 2014JY0099)资助项目. (No. 2014JY0099)

  • The reaction mechanism for N-methylindole and keto ester catalyzed by InX3 (X=F, Br) was studied by the density functional theory (DFT). The geometries and the frequencies of reactants, intermediates, transition states, and products have been calculated at the B3LYP/6-31+G(d, p) level, dichloroethane (DCE) is used as a solvent and the LanL2DZ basis has been used for In atom. Transition states have been confirmed by the corresponding vibration analysis and intrinsic reaction coordinate (IRC). In addition, nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analyze orbital interactions and bond natures. The results showed that the activation energies of rate-determining steps in which N-methylindole reacted with keto ester to form 1,2-adduct and 1,4-adduct were 25.62 and 12.52 kcal/mol catalyzed by InF3 while those were 26.87 and 13.95 kcal/mol when the reaction was catalyzed by InBr3 under the same conditions. Comparing the results of our research, InF3 can effectively catalyze the reaction, and the 1,4-adduct was more likely to be produced. The final result of our theory study agreed with the experimental data, meanwhile, self-consistent reaction field (SCRF) was carried out using the polarized continuum model (PCM) at the same theoretical level for geometry optimizations and frequency calculations in five different salvations. We predicted that the productivity to form 1,4-adduct was more higher catalyzed by InF3 in the solvent of dimethyl sulfoxide (DMSO).
  • 加载中
    1. [1]

      [1] Marckwald, W.; Desch, B. Chem. Res. 1904, 37, 1368.

    2. [2]

      [2] Qi, L.; Jiang, B. Acta Acad. Med. Zunyi 2004, 2, 188 (in Chinese). (企兰, 江波, 遵义医学院学报, 2004, 2, 188.)

    3. [3]

      [3] Zhang, W. H.; Yang, C. L.; Wang, M. H. Chin. J. Org. Chem. 2003, 23, 741 (in Chinese). (章维华, 杨春龙, 王鸣华, 有机化学, 2003, 23, 741.)

    4. [4]

      [4] Liu, S. M. J. Southwest Univ. Sci. Technol. 2005, 20, 68 (in Chinese). (刘思曼, 西南科技大学学报, 2005, 20, 68.)

    5. [5]

      [5] Wang, Y. F.; Wang, K.; Zhang, W.; Zhang, B. B.; Zhang, C. X.; Xu, D. Q. Eur. J. Org. Chem. 2012, 19, 3691.

    6. [6]

      [6] Wang, Y. F.; Chen, R. X.; Wang, K.; Zhang, B. B.; Li, Z. B.; Xu, D. Q. Green Chem. 2012, 14, 893.

    7. [7]

      [7] Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org. Chem. 2010, 14, 2635.

    8. [8]

      [8] Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 160.

    9. [9]

      [9] Zhou, J.; Tang, Y. J. Am. Chem. Sco. 2002, 124, 9030..

    10. [10]

      [10] Bandini, M.; Fagioli, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Tetrahedron Lett. 2003, 44, 5843.

    11. [11]

      [11] Blay, G.; Fernández, I.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601.

    12. [12]

      [12] Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem.-Eur. J. 2008, 14, 3630.

    13. [13]

      [13] Zhang, L.; Zheng, Y.; Pan, X. X. Chin. J. Org. Chem. 2014, 34, 1595 (in Chinese). (张林, 郑妍, 潘晓晓, 有机化学, 2014, 34, 1595.)

    14. [14]

      [14] Reddi, Y.; Sunoj, R. B. ACS Catal. 2015, 5, 1596.

    15. [15]

      [15] McKeown, B. A.; Gonzalez, H. E.; Friedfeld, M. R.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M. J. Am. Chem. Soc. 2011, 133, 19131.

    16. [16]

      [16] Yuan, Q. L.; Zhou, X. T.; Ji, H. B. Catal. Commun. 2010, 37, 785.

    17. [17]

      [17] Becke, A. D. J. Phys. Chem. C 1993, 98, 5648.

    18. [18]

      [18] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    19. [19]

      [19] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.

    20. [20]

      [20] Baron, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.

    21. [21]

      [21] Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. C 1989, 90, 2154.

    22. [22]

      [22] Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. C 1990, 94, 5523.

    23. [23]

      [23] Reed, A. E.; Weinhold, F.; Curtiss, L. A. Chem. Rev. 1988, 88, 899.

    24. [24]

      [24] Bader, R. F. W. Chem. Rev. 1991, 91, 893.

    25. [25]

      [25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand. J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    26. [26]

      [26] Lv, J.; Zhang, L.; Zhou, Y. Angew. Chem. 2011, 123, 6740.

    27. [27]

      [27] Serr, A.; Netz, R. R. Int. J. Quantum Chem. 2006, 106, 2960.

    28. [28]

      [28] Jaequemin, D.; Preat, J.; Wathelet, V.; Perpete, E. A. Chem. Phys. 2006, 328, 324.

    29. [29]

      [29] Lin, S. T.; Hsieh, C. M. J. Chem. Phys. 2006, 125, 124103.

    30. [30]

      [30] Lalevee, J.; Allonas, X.; Jacques, P. J. Mol. Struct: THEOCHEM 2006, 767, 143.

    31. [31]

      [31] Jiang, H.; Wu, T.; Li, H. R. Acta Phys-Chim. Sin. 2006, 22, 1047 (in Chinese). (姜辉, 吴韬, 李浩然, 物理化学学报, 2006, 22, 1047.)

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(0)
  • Abstract views(1204)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return