Citation: Feng Cuilan, Hei Liying, Li Zhen, Liu Lantao. Magnetic Microporous Organic Polymer of 1, 1'-Bi-2-naphtholSupported Palladium for Suzuki Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2015, 36(1): 179-184. doi: 10.6023/cjoc201507028 shu

Magnetic Microporous Organic Polymer of 1, 1'-Bi-2-naphtholSupported Palladium for Suzuki Coupling Reactions

  • Corresponding author: Feng Cuilan,  Liu Lantao, liult05@iccas.ac.cn
  • Received Date: 23 July 2015
    Revised Date: 22 August 2015

    Fund Project: the National Natural Science Foundation of China 21102087the National Natural Science Foundation of China 21202095

Figures(5)

  • A recyclable palladium catalyst supported on magnetic microporous organic polymer (MOP) of 1, 1'-bi-2-naphthol (Fe3O4@MOPB-Pd) was synthesized by two steps. After being charactered by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG) and vibrating sample magnetometer (VSM), the palladium catalyst was applied in Suzuki coupling reaction in air atmosphere. With 0.01 g of Fe3O4@MOPB-Pd (0.12 mol% Pd based on bromobenzene) as catalyst, 1.0 mmol of bromobenzene reacted with 1.1 equiv. phenylboronic acid at 60 ℃ for 3 h can give the product with 98% yield. In addition, Fe3O4@MOPB-Pd can be easily separated from reaction system in the presence of magnetic field and the 92% yield was achieved even being used at 7th time for the Suzuki coupling reaction of iodobenzene and phenylboronic acid.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Jiang, J. X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; . Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2011, 50, 1072.
      (b) Du, X.; Sun, Y.; Tan, B.; Teng, Q.; Yao, X.; Su, C.; Wang, W. Chem. Commun. 2010, 46, 970.
      (c) Totten, R. K.; Weston, M. H.; Park, J. K.; Farha, O. K.; Hupp, J. T.; Nguyen. S. T. ACS Catal. 2013, 3, 1454.
      (d) Wang, J. L.; Wang, C.; de Krafft K. E.; Lin, W. B. ACS Catal. 2012, 2, 417.
      (e) Totten, R. K.; Kim, Y. S.; Weston, M. H.; Farha, O. K.; Hupp J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2013, 135, 11720.
      f) Wang, W.; Zheng, A.; Zhao, P.; Xia C.; Li, F. ACS Catal. 2014, 4, 321
      (g) Kraft, S. J.; Zhang, G.; Childers, D.; Dogan, F.; Miller, J. T.; Nguyen S. T.; Hock, A. S. Organometallics 2014, 33, 2517

    4. [4]

      Rangel Rangel, E.; Maya, E. M.; Sánchez, F.; de la Campaa J. G.; Iglesias, M. Green Chem. 2015, 17, 466.
      (b) Pachfule, P.; Panda, M. K.; Kandambeth, S.; Shivaprasad, S. M.; Díaz Díaz, D.; Banerjee, R. J. Mater. Chem. A 2014, 2, 7944.
      (c) Ding, S.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.; Su, C.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
      (d) Li, B.; Guan, Z.; Yang, X.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K.; Tan, B.; Li, T. J. Mater. Chem. A 2014, 2, 11930.
      (e) Li, L.; Zhao, H.; Wang, R. ACS Catal. 2015, 5, 948.
      (f) Shunmughanathan, M.; Puthiaraj, P.; Pitchumani, K. ChemCatChem 2015, 7, 666.

    5. [5]

      Nasir Baig, R. B.; Varma, R. S. Chem. Commun. 2013, 49, 752.
      (b) Wang, D.; Astruc, D. Chem. Rev. 2014, 114, 6949.
      (c) Gawande, M. B.; Brancoa, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 3371.
      (d) Shylesh, S.; Schünemann, V.; Thiel, W. R. Angew. Chem., Int. Ed. 2010, 49, 3428.
      (e) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara M.; Basset, J. M. Chem. Rev. 2011, 111, 3036.

    6. [6]

      Kainz, Q. M.; Reiser, O. Acc. Chem. Res. 2014, 47: 667.  doi: 10.1021/ar400236y

    7. [7]

      Yang, X.; Li, B.; Majeed, I.; Liang, L.; Long, X.; Tan, B. Polym. Chem. 2013, 4, 1425.
      (b) Yoo, J.; Park, N.; Park, J. H.; Park, J. H.; Kang, S.; Lee, S. M.; Kim, H. J.; Jo, H.; Park, J. G.; Son, S. U. ACS Catal. 2015, 5, 350.
      (c) Yang, J.; Wang, D.; Liu, W.; Zhang, X.; Bian, F.; Yu, W. Green Chem. 2013, 15, 3429.

    8. [8]

      Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. Macromolecules 2011, 44, 2410.  doi: 10.1021/ma200630s

    9. [9]

      Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24, 3390.  doi: 10.1002/adma.v24.25

    10. [10]

      Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24, 5703.  doi: 10.1002/adma.v24.42

    11. [11]

      Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2012, 134, 10741.  doi: 10.1021/ja301926h

    12. [12]

      Hei, L.; Feng C.; Li, Z.; Liu, L.; Gui, J. Chin. J. Org. Chem. 2015, 35, 1673 (in Chinese).  doi: 10.6023/cjoc201503014
       

    13. [13]

      Soomro, S. S.; Ansari, F. L.; Chatziapostolou, K.; Köhler, K. J. Catal. 2010, 273, 138.  doi: 10.1016/j.jcat.2010.05.007

    14. [14]

      Ouyang, K.; Xi, Z. Acta Chim. Sinica 2013, 71, 13 (in Chinese).  doi: 10.6023/A12110984

    15. [15]

      Jadsada, R.; Thanawat, C.; Songyos, P.; Sirilata, Y.; Preeyanuch, S.; Pailin, S.; Palangpon, K.; Supavadee K. J. Organomet. Chem. 2014, 752, 161.  doi: 10.1016/j.jorganchem.2013.12.015

    16. [16]

      Wan, L.; Cai, C. Catal. Commun. 2012, 24, 105.  doi: 10.1016/j.catcom.2012.03.032

    17. [17]

      Freundlich, J. S.; Landis, H. E. Tetrahedron Lett. 2006, 47, 4275.  doi: 10.1016/j.tetlet.2006.04.027

    18. [18]

      Mandali, P. K, ; Chand, D. K. Catal. Commun. 2013, 31, 16.  doi: 10.1016/j.catcom.2012.10.020

    19. [19]

      Chua, Y. Y.; Duong, H. A. Chem. Commun. 2014, 50, 8424.  doi: 10.1039/c4cc02930e

    20. [20]

      Liu, C.; Ni, Q. J.; Hu, P. P.; Qiu, J. S. Org. Biomol. Chem. 2011, 9, 1054.  doi: 10.1039/C0OB00524J

    21. [21]

      Feng, G. F.; Liu, F. J.; Lin, C.; Li, W. T.; Wang, S. N.; Qi, C. Z. Catal. Commun. 2013, 37, 27.  doi: 10.1016/j.catcom.2013.03.006

    22. [22]

      Haga, N.; Takayanagi, H. J. Org. Chem. 1996, 61, 735.  doi: 10.1021/jo9517196

    23. [23]

      ] Cella, R.; Cunha, R. L. O. R.; Reis, A. E. S.; Pimenta, D. C.; Klitzke, C. F.; Stefani, H. A. J. Org. Chem. 2006, 71, 244.  doi: 10.1021/jo052061r

    24. [24]

      Kabalka, G. W.; Al-Masum, M. Tetrahedron Lett. 2005, 46, 6329.  doi: 10.1016/j.tetlet.2005.07.036

    25. [25]

      Le, X. D.; Dong, Z. P.; Jin, Z. C.; Wang, Q. Q.; Ma, J. T. Catal. Commun. 2014, 53, 47.  doi: 10.1016/j.catcom.2014.04.025

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(0)
  • Abstract views(992)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return