Citation: Zhou Wei-Lei, Chen Yong, Liu Yu. Lanthanide Luminescent Supramolecular Assembly Based on Cyclodextrin[J]. Acta Chimica Sinica, ;2020, 78(11): 1164-1176. doi: 10.6023/A20100486 shu

Lanthanide Luminescent Supramolecular Assembly Based on Cyclodextrin

  • Corresponding author: Liu Yu, yuliu@nankai.edu.cn
  • Received Date: 22 October 2020
    Available Online: 4 November 2020

    Fund Project: the National Natural Science Foundation of China 21672113the National Natural Science Foundation of China 21971127the National Natural Science Foundation of China 21772099the National Natural Science Foundation of China 21861132001the Doctoral Scientific Research Foundation of Inner Mongolia University for Nationalities BS554Project supported by the National Natural Science Foundation of China (Nos. 21672113, 21772099, 21861132001, 21971127) and the Doctoral Scientific Research Foundation of Inner Mongolia University for Nationalities (BS554)

Figures(16)

  • Lanthanide elements show great advantages in luminescence materials and are increasingly applied in the design of advanced functional luminescence materials due to their excellent luminescence characteristics, such as long-lived excited states, narrow emission bandwidths and large Stokes shift. Cyclodextrin, as the second generation supramolecular host molecule, is easy to be functionalized and specifically binds the luminescent guests, so it is widely used to construct supramolecular systems such as luminescent materials and fluorescence sensing probes. In this paper, based on the construction of supramolecular assemblies of lanthanide/cyclodextrin, the author reviews the recent research progress of different lanthanide/cyclodextrin luminescent materials, which will provide reference for the development of new multifunctional lanthanide luminescent materials. Finally, the scientific problems encountered by lanthanide luminescent materials are put forward, and the development direction of lanthanide/cylodextrin luminescent materials is prospected.
  • 加载中
    1. [1]

      Bünzli, J.-C.G. Acc. Chem. Res. 2006, 39, 53.  doi: 10.1021/ar0400894

    2. [2]

      Eliseeva, S. V.; Bünzli, J.-C. G. Chem. Soc. Rev. 2010, 39, 189.  doi: 10.1039/B905604C

    3. [3]

      Bünzli, J.-C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048.  doi: 10.1039/b406082m

    4. [4]

      Faulkner, S.; Pope, S. J. A.; Burton-Pye, B. P. Appl. Spectrosc. Rev. 2005, 40, 1.  doi: 10.1081/ASR-200038308

    5. [5]

      Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371.  doi: 10.1021/cr030017a

    6. [6]

      Molander, G. A.; Romero, J. A. C. Chem. Rev. 2002, 102, 2161.  doi: 10.1021/cr010291+

    7. [7]

      Bettencourt-Dias, A.; Barber, P. S.; Bauer, S. J. Am. Chem. Soc. 2012, 134, 6987.  doi: 10.1021/ja209572m

    8. [8]

      McMahon, B. K.; Gunnlaugsson, T. J. Am. Chem. Soc. 2012, 134, 10725.  doi: 10.1021/ja300887k

    9. [9]

      Kotova, O.; Bradberry, S. J.; Savyasachi, A. J.; Gunnlaugsson, T. Dalton Trans. 2018, 47, 16377.  doi: 10.1039/C8DT03768J

    10. [10]

      Binnemans, K. Chem. Rev. 2009, 109, 4283.  doi: 10.1021/cr8003983

    11. [11]

      Hu, S.-J.; Guo, X. Q.; Zhou, L.-P.; Cai, L.-X.; Sun, Q.-F. Chinese J. Chem. 2019, 37, 657.  doi: 10.1002/cjoc.201900101

    12. [12]

      Guan, X.; Li, Z.; Wang, L.; Liu, M.; Wang, K.; Yang, X.; Li, Y.; Hu, L.; Zhao, X.; Lai, S.; Lei, Z. Acta Chim. Sinica 2019, 77, 1278(in Chinese).
       

    13. [13]

      Liu, M.; Wu, Q.; Shi, H.; An, Z.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese).
       

    14. [14]

      Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681.  doi: 10.1021/ar0502275

    15. [15]

      Liu, Y.; Chen, Y. Chem. Soc. Rev. 2010, 39, 495.  doi: 10.1039/B816354P

    16. [16]

      Chen, Y.; Huang, F.; Li, Z. T.; Liu, Y. Sci. China Chem. 2018, 61, 879.  doi: 10.1007/s11426-018-9338-5

    17. [17]

      Phua, S. Z. F.; Yang, G.; Lim, W. Q.; Verma, A.; Chen, H.; Thanabalu, T.; Zhao, Y. ACS Nano 2019, 13, 4742.  doi: 10.1021/acsnano.9b01087

    18. [18]

      Phua, S. Z. F.; Xue, C.; Lim, W. Q.; Yang, G.; Chen, H.; Zhang, Y.; Wijaya, C. F.; Luo, Z.; Zhao, Y. Chem. Mater. 2019, 31, 3349.  doi: 10.1021/acs.chemmater.9b00439

    19. [19]

      Chen, H.; Zeng, X.; Tham, H. P.; Phua, S. Z. F.; Cheng, W.; Zeng, W.; Shi, H.; Mei, L.; Zhao, Y. Angew. Chem., Int. Ed. 2019, 58, 7641.  doi: 10.1002/anie.201900886

    20. [20]

      Zhang, Y.; Chen, Y.; Li, J.-J.; Liang, L.; Liu, Y. Acta Chim. Sinica 2018, 76, 622(in Chinese).
       

    21. [21]

      Liu, Y.; Chen, Y.; Zhang, H.-Y. Handbook of Macrocyclic Supramolecular Assembly, Springer, Singapore, 2020.

    22. [22]

      Ma, X.; Wang, J.; Tian, H. Acc. Chem. Res. 2019, 52, 738.  doi: 10.1021/acs.accounts.8b00620

    23. [23]

      Turro, N. J.; Bolt, J. D.; Kuroda, Y.; Tabushi, I. Photochem. Photobiol. 1982, 35, 69.  doi: 10.1111/j.1751-1097.1982.tb03812.x

    24. [24]

      Chen, H.; Ma, X.; Wu, S.; Tian, H. Angew. Chem., Int. Ed.., 2014, 53, 14149.  doi: 10.1002/anie.201407402

    25. [25]

      Wu, H.; Zhu, L.; Zhao, Y.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 11206.  doi: 10.1002/anie.201915433

    26. [26]

      Huang, Z.; Ma, X. Cell Rep. Phys. Sci. 2020, 1, 100167.  doi: 10.1016/j.xcrp.2020.100167

    27. [27]

      Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. Adv. Mater. 2017, 29, 1701905.  doi: 10.1002/adma.201701905

    28. [28]

      Yu, X.; Liang, W.; Huang, Q.; Wu, W.; Chruma, J. J.; Yang, C. Chem. Commun. 2019, 55, 3156.  doi: 10.1039/C9CC00097F

    29. [29]

      Lai, H.; Zhao, T.; Deng, Y.; Fan, C.; Wu, W.; Yang, C. Chin. Chem. Lett. 2019, 30, 1979.  doi: 10.1016/j.cclet.2019.09.009

    30. [30]

      Kanagaraj, K.; Xiao, C.; Rao, M.; Fan, C.; Borovkov, V.; Cheng, G.; Zhou, D.; Zhong, Z.; Su, D.; Yu, X.; Yao, J.; Hao, T.; Wu, W.; Chruma, J. J.; Yang, C. iScience 2020, 23, 100927.  doi: 10.1016/j.isci.2020.100927

    31. [31]

      Xu, W.; Liang, W.; Wu, W.; Fan, C.; Rao, M.; Su, D.; Zhong, Z.; Yang, C. Chem. Eur. J. 2018, 24, 16677.  doi: 10.1002/chem.201804001

    32. [32]

      Rao, M.; Kanagaraj, K.; Fan, C.; Ji, J.; Xiao, C.; Wei, X.; Wu, W.; Yang, C. Org. Lett. 2018, 20, 1680.  doi: 10.1021/acs.orglett.8b00520

    33. [33]

      Zhang, Y.-M.; Han, M.; Chen, H.-Z.; Zhang, Y.; Liu, Y. Org. Lett. 2013, 15, 967.

    34. [34]

      Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70.  doi: 10.1039/B901710K

    35. [35]

      Beutler, M.; Heintzmann, R. Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine, Springer, Berlin, 2005.

    36. [36]

      Willner, I.; Goren, Z. J. Chem. Soc. Chem. Commun. 1983, 24, 1469.

    37. [37]

      Pikramenou, Z.; Nocera, D. G. Inorg. Chem. 1992, 31, 532.  doi: 10.1021/ic00030a002

    38. [38]

      Pikramenou, Z.; Johnson, K. M.; Nocera, D. G. Tetrahedron Lett. 1993, 34, 3531.  doi: 10.1016/S0040-4039(00)73628-8

    39. [39]

      Mortellaro, M. A.; Nocera, D. G. J. Am. Chem. Soc. 1996, 118, 7414.  doi: 10.1021/ja961323r

    40. [40]

      Michels, J. J.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 2056.  doi: 10.1021/ja017025y

    41. [41]

      Hsu, S.-H.; Yilmaz, M. D.; Blum, C.; Subramaniam, V.; Reinhoudt, D. N.; Velders, A. H.; Huskens, J. J. Am. Chem. Soc. 2009, 472, 12567.

    42. [42]

      Yilmaz, M. D.; Hsu, S.-H.; Reinhoudt, D. N.; Velders, A. H.; Huskens, J. Angew. Chem., Int. Ed. 2010, 122, 6074.  doi: 10.1002/ange.201000540

    43. [43]

      Hsu, S.-H.; Yilmaz, M. D.; Reinhoudt, D. N.; Velders, A. H.; Huskens, J. Angew. Chem., Int. Ed. 2013, 52, 714.  doi: 10.1002/anie.201207647

    44. [44]

      Liu, Y.; Chen, G.-S.; Chen, Y.; Zhang, N.; Chen, J.; Zhao, Y.-L. Nano Lett. 2006, 478, 2196.

    45. [45]

      Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101.  doi: 10.1038/nmat2614

    46. [46]

      Orgiu, E.; Crivillers, N.; Herder, M.; Grubert, L.; Patzel, M.; Frisch, J.; Pavlica, E.; Duong, D. T.; Bratina, G.; Salleo, A.; Koch, N.; Hecht, S.; Samorì, P. Nat. Chem. 2012, 4, 675.  doi: 10.1038/nchem.1384

    47. [47]

      Naumov, P.; Chizhik, S.; Panda, M. K.; Nath, N. K.; Boldyreva, E. Chem. Rev. 2015, 115, 12440.  doi: 10.1021/acs.chemrev.5b00398

    48. [48]

      Zhang, L.; Ma, S.; Wang, H.; Liang, Y.; Zhang, Z. Acta Chim. Sinica 2020, 78, 865(in Chinese).
       

    49. [49]

      Russew, M.-M.; Hecht, S. Adv. Mater. 2010, 22, 3348.  doi: 10.1002/adma.200904102

    50. [50]

      Zhang, L.; Zhong, X.; Pavlica, E.; Li, S.; Klekachev, A.; Bratina, G.; Ebbesen, T. W.; Orgiu, E.; Samorì, P. Nat. Nanotechnol. 2016, 11, 900.  doi: 10.1038/nnano.2016.125

    51. [51]

      Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Chem. Soc. Rev. 2012, 41, 1754.  doi: 10.1039/C1CS15205J

    52. [52]

      Gelebart, A. H.; Mulder, D. J.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.; Selinger, R. L.; Broer, D. J. Nature 2017, 546, 632.  doi: 10.1038/nature22987

    53. [53]

      Aida, T.; Meijer, E.; Stupp, S. Science 2012, 335, 813.  doi: 10.1126/science.1205962

    54. [54]

      Avestro, A.-J.; Belowich, M. E.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 5881.  doi: 10.1039/c2cs35167f

    55. [55]

      Li, Z.; Wang, G.; Wang, Y.; Li H. Angew. Chem., Int. Ed. 2018, 57, 2194.  doi: 10.1002/anie.201712670

    56. [56]

      Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.  doi: 10.1039/c0cs00204f

    57. [57]

      D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.  doi: 10.1002/adma.200400684

    58. [58]

      Shang, M. M.; Li, C. X.; Lin, J. Chem. Soc. Rev. 2014, 43, 1372.  doi: 10.1039/C3CS60314H

    59. [59]

      Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclere, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2009, 131, 833.  doi: 10.1021/ja807996y

    60. [60]

      Wang, J.; Li, X.; Chu, H.; He, J.; Chen, Z. Chin. J. Org. Chem. 2019, 39, 3399(in Chinese).

    61. [61]

      Zhou, W.; Chen, Y.; Yu, Q.; Li, P.; Chen, X.; Liu, Y. Chem. Sci. 2019, 10, 3346.  doi: 10.1039/C9SC00026G

    62. [62]

      Bessa, P. C.; Casal, M.; Reis, R. L. J. Tissue Eng. Regener. Med. 2008, 2, 81.  doi: 10.1002/term.74

    63. [63]

      Hoffman, A. S. Adv. Drug Delivery Rev. 2012, 64, 18.  doi: 10.1016/j.addr.2012.09.010

    64. [64]

      Mandl, G. A.; Rojas-Gutierrez, P. A.; Capobianco, J. A. Chem. Commun. 2018, 54, 5847.  doi: 10.1039/C8CC03101K

    65. [65]

      Auzel, F. Chem. Rev. 2004, 104, 139.  doi: 10.1021/cr020357g

    66. [66]

      Wang, F.; Liu, X. G. Chem. Soc. Rev. 2009, 38, 976.  doi: 10.1039/b809132n

    67. [67]

      Suyver, J. F.; Aebischer, A.; Biner, D. A.; Gerner, P.; Grimm, J.; Heer, S.; Kramer, K. W.; Reinhard, C.; Gudel, H. U. Opt. Mater. 2005, 27, 1111.  doi: 10.1016/j.optmat.2004.10.021

    68. [68]

      Yu, M. X.; Li, F. Y.; Chen, Z. G.; Hu, H.; Zhan, C.; Yang, H.; Huang, C. H. Anal. Chem. 2009, 81, 930.  doi: 10.1021/ac802072d

    69. [69]

      Wu, S. W.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Proc. Natl. Acad. Sci. 2009, 106, 10917.  doi: 10.1073/pnas.0904792106

    70. [70]

      Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Adv. Funct. Mater. 2009, 19, 853.  doi: 10.1002/adfm.200800765

    71. [71]

      Huang, Q. Acta Chim. Sinica 2020, 78, 968(in Chinese).
       

    72. [72]

      Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese).
       

    73. [73]

      Liu, Q.; Li, C.; Yang, T.; Yi, T.; Li, F. Chem. Commun. 2010, 46, 5551.  doi: 10.1039/c0cc01352h

    74. [74]

      Rong, P.; Yang, K.; Srivastan, A.; Kiesewetter, D. O.; Yue, X.; Wang, F.; Nie, L.; Bhirde, A.; Wang, Z.; Liu, Z. Theranostics 2014, 4, 229.  doi: 10.7150/thno.8070

    75. [75]

      Li, H.; Song, S. X.; Wang, W.; Chen, K. Z. Dalton Trans. 2015, 44, 16081.  doi: 10.1039/C5DT01015B

    76. [76]

      Tian, G.; Ren, W.; Yan, L.; Jian, S.; Gu, Z.; Zhou, L.; Jin, S.; Yin, W.; Li, S.; Zhao, Y. Small 2013, 9, 1929.  doi: 10.1002/smll.201201437

    77. [77]

      Chen, Q.; Wang, C.; Cheng, L.; He, W.; Cheng, Z.; Liu, Z. Biomaterials 2014, 35, 2915.  doi: 10.1016/j.biomaterials.2013.12.046

    78. [78]

      Wang, A.; Jin, W.; Chen, E.; Zhou, J.; Zhou, L.; Wei, S. Dalton Trans. 2016, 45, 3853.  doi: 10.1039/C5DT04900H

    79. [79]

      Fang, J.; Nakamura, H.; Maeda, H. Adv. Drug Delivery Rev. 2011, 63, 136.  doi: 10.1016/j.addr.2010.04.009

    80. [80]

      Torchilin, V. Adv. Drug Delivery Rev. 2011, 63, 131.  doi: 10.1016/j.addr.2010.03.011

    81. [81]

      Zhang, C.; Ni, D.; Liu, Y.; Yao, H.; Bu, W.; Shi, J. Nat. Nanotechnol. 2017, 12, 378.  doi: 10.1038/nnano.2016.280

    82. [82]

      Zhao, M.; Li, B.; Wang, P.; Lu, L.; Zhang, Z.; Liu, L.; Wang, S.; Li, D.; Wang, R.; Zhang, F. Adv. Mater. 2018, 1804982.

    83. [83]

      Gonçalves, M. S. T. Chem. Rev. 2009, 109, 190.  doi: 10.1021/cr0783840

    84. [84]

      Gu, B.; Zhou, Y.; Zhang, X.; Liu, X.; Zhang, Y.; Marks, R.; Zhang, H.; Liu, X.; Zhang, Q. Nanoscale 2016, 8, 276.  doi: 10.1039/C5NR05286F

    85. [85]

      Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293.  doi: 10.1021/cr980440x

    86. [86]

      Geraldes, C. F. G. C.; Laurent, S. Contrast Media Mol. Imaging 2009, 4, 1.  doi: 10.1002/cmmi.265

    87. [87]

      Cabella, C.; Geninatti, C. S.; Corpillo, D.; Barge, A.; Ghirelli, C.; Bruno, E.; Lorusso, V.; Uggeri, F.; Aime, S. Contrast Media Mol. Imaging 2006, 1, 23.  doi: 10.1002/cmmi.88

    88. [88]

      Kotková, Z.; Helm, L.; Kotek, J.; Hermanna, P.; Lukeš, I. Dalton Trans. 2012, 41, 13509.  doi: 10.1039/c2dt30858d

    89. [89]

      Weissleder, R.; Pittet, M. J. Nature 2008, 452, 580.  doi: 10.1038/nature06917

    90. [90]

      Mart-Bonmat, L.; Sopena, R.; Bartumeus, P.; Sopena, P. Contrast Media Mol. Imaging 2010, 5, 180.  doi: 10.1002/cmmi.393

    91. [91]

      Fredy, J. W.; Scelle, J.; Guenet, A.; Morel, E.; de Beaumais, S. A.; Menand, M.; Marvaud, V.; Bonnet, C. S.; Toth, E.; Sollogoub, M.; Vives, G.; Hasenknopf, B. Chem. Eur. J. 2014, 20, 10915.  doi: 10.1002/chem.201403635

    92. [92]

      Fredy, J. W.; Scelle, J.; Ramniceanu, G.; Doan, B.-T.; Bonnet, C. S.; Toth, E.; Menand, M.; Sollogoub, M.; Vives, G.; Hasenknopf, B. Org. Lett. 2017, 19, 1136.  doi: 10.1021/acs.orglett.7b00153

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    5. [5]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    11. [11]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    14. [14]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    19. [19]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(14)
  • Abstract views(1365)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return