Citation: Zhang Mengting, Yan Tingting, Dai Weili, Guan Naijia, Li Landong. Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization[J]. Acta Chimica Sinica, ;2020, 78(12): 1404-1410. doi: 10.6023/A20080346 shu

Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization

  • Corresponding author: Li Landong, fycheng@nankai.edu.cn
  • Received Date: 4 August 2020
    Available Online: 17 September 2020

    Fund Project: Project supported by the Municipal Natural Science Foundation of Tianjin (Nos.18ICIQJC47400, 18ICZDIC37400) and Ffundamental Research Funds for theCentral Universities, Nankai Universitythe Municipal Natural Science Foundation of Tianjin 18ICZDIC37400the Municipal Natural Science Foundation of Tianjin Nos.18ICIQJC47400

Figures(4)

  • A series of Mo/beta zeolite samples with different Mo loadings were prepared via a two-step post-synthesis strategy using dealuminated Si-beta and bis(cyclopentadienyl) molybdenum dichloride (Cp2MoCl2) as precursors. The as-prepared samples were thoroughly characterized by a series of techniques including X-ray diffraction (XRD), the diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), temperature-programmed reduction by hydrogen (H2-TPR), high-resolution transmission electron microscopy (HR-TEM) and scanning transmission electron microscopy (STEM), Mo the K-edge X-ray absorption near edge structure (XANES), the extended X-ray absorption fine structure (EXAFS) and Raman spectroscopy. Dioxo (Si-O)2Mo(=O)2 species were determined to be the dominant Mo species confined and stabilized in structure of beta zeolite. The as-prepared Mo/beta samples were applied as potential catalysts in the reaction of oxidative desulfurization (ODS) from model fuel. The effects of catalyst supports, molybdenum loadings, reaction temperature, and sulfur substrates on the ODS performance were investigated in detail, and typical kinetic analyses of dibenzothiophene (DBT) oxidation were conducted, giving an apparent activation energy value of 50.2 kJ/mol. Owing to the structure confinement, Mo species can be well stabilized within the pores and cages of beta zeolite, and the distribution of which can be regulated by controlling the anchoring sites in the zeolite support to derive well-defined isolated dioxo Mo species. 1% Mo/beta exhibited remarkable oxidative desulfurization efficiency in the removal of heterocyclic sulfur compounds like DBT from the model fuel among all the catalysts tested. Typically, 99.3% of DBT could be oxidized to the corresponding sulfone within 120 min at 333 K. Moreover, 1% Mo/beta showed good recyclability and no obvious activity loss could be observed in five recycles, in significant contrast to poor cyclic stability of traditional Mo/SiO2 catalyst caused by the significant loss of Mo species during desulfurization reaction. Therefore, Mo/beta might be developed as efficient and stable ODS catalysts for future applications under mild reaction conditions.
  • 加载中
    1. [1]

      Eẞer, J.; Wasserscheid, P.; Jess, A. Green Chem. 2004, 6, 316.

    2. [2]

      Ismagilov, Z.; Yashnik, S.; Kerzhentsev, M.; Parmon, V.; Bourane, A.; Al-Shahrani, F. M.; Hajji, A. A.; Koseoglu, O. R. Catal. Rev. 2011, 53, 199.

    3. [3]

      Yang, X.-D.; Wang, X.-M.; Gao, S.-B. Acta Chim. Sinica 2017, 75, 479(in Chinese).

    4. [4]

      Li, X.-F.; Chen, L.; Xu, S.-C.; Zhao, W.-B. Acta Chim. Sinica 2019, 77, 1287(in Chinese).

    5. [5]

      Zhang, T.; Guo, C.; Wei, S.-X. Acta Chim. Sinica 2018, 76, 62(in Chinese).

    6. [6]

      Safa, M. A.; Bouresli, R.; Al-Majren, R.; Al-Shamary, T.; Ma, X. L. Fuel 2019, 239, 24.

    7. [7]

      Srivastava, V. C. RSC Adv. 2012, 2, 759.

    8. [8]

      Yang, G.-X.; Zhang, X.-Y.; Yang, H.-L.; Ma, J.-T. J. Colloid Interface Sci. 2018, 532, 92.

    9. [9]

      Zhang, D.-W.; Tao, H.-Z.; Yao, C.-Y.; Sun, Z.-S. Chem. Eng. Sci. 2017, 174, 203.

    10. [10]

      Xiao, X.; Zhong, H.; Zheng, C.-X.; Lu, M.-L.; Zuo, X.-X.; Nan, J.-M. Chem. Eng. J. 2016, 304, 908.

    11. [11]

      Prins, R.; Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, Vol. 6, Wiley-VCH, Weinheim, 2008, pp. 2695-2718.

    12. [12]

      Chen, K.; Liu, N.; Zhang, M.-H.; Wang, D.-H. Appl. Catal. B 2017, 212, 32.

    13. [13]

      Chen, K.; Zhang, X.-M.; Yang, X.-F.; Jiao, M.-G.; Zhen, Z.; Zhang, M.-H.; Wang, D.-H; Bu, X.-H. Appl. Catal. B 2018, 238, 263.

    14. [14]

      Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. B 2019, 253, 309.

    15. [15]

      Zhang, Y.; Wang, R. Appl. Catal. B 2018, 234, 247.

    16. [16]

      Bryzhina, A. A.; Gantmanb, M. G.; Buryak, A. K.; Tarkhanova, I. G. Appl. Catal. B 2019, 257,117938.

    17. [17]

      Zhang, X.-M.; Zhang, Z.-H.; Zhang, B.-H.; Yang, X.-F.; Chang, X.; Zhou, Z.; Zhang, D.-H.; Zhang, M.-H.; Bu, X.-H. Appl. Catal. B 2019, 256, 117804.

    18. [18]

      Kulikov, L. A.; Akopyan, A. V.; Polikarpova, P. D.; Zolotukhina, A. V.; Maximov, A. L.; Anisimov, A. V.; Karakhanov, E. A. Ind. Eng. Chem. Res. 2019, 58, 20562.

    19. [19]

      Wu, L.; Miao, G.; Dai, X.; Dong, L.; Li, Z.; Xiao, J. Energy Fuel. 2019, 33, 7287.

    20. [20]

      Gonzalez, J.; Wang, J. A.; Chen, L.; Manriquez, M. E.; Dominguez, J. M. J. Phys. Chem. C 2017, 121, 23988.

    21. [21]

      Mokhtari, B.; Akbari, A.; Omidkhah, M. Energy Fuel. 2019, 33, 7276.

    22. [22]

      Yao, X.-Y.; Wang, C.; Liu, H.; Li, H.-P.; Wu, P.-W.; Fan, L.; Li, H.-M.; Zhu, W.-S. Ind. Eng. Chem. Res. 2019, 58, 863.

    23. [23]

      Wang, J.-S.; Wu, W.-P.; Ye, H.-Y.; Zhao, Y.-H.; Wang, W.-H.; Bao, M. RSC Adv. 2017, 7, 44827.

    24. [24]

      Hou, L.-P.; Zhao, R.-X.; Li, X.-P.; Gao, X.-H. Appl. Surf. Sci. 2018, 434, 1200.

    25. [25]

      Grünert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. 1992, 135, 269.

    26. [26]

      Grünert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. 1992, 135, 287.

    27. [27]

      Ookoshi, T.; Onaka, M. Chem. Commun. 1998, 21, 2399.

    28. [28]

      Handzlik, J.; Ogonowski, J. Catal. Lett. 2003, 88, 119.

    29. [29]

      Li, X.; Zhang, W.; Liu, S.; Han, X.; Xu, L.; Bao, X. J. Mol. Catal. A 2006, 250, 94.

    30. [30]

      Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Catal. 2007, 250, 55.

    31. [31]

      Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Phys. Chem. C 2008, 112, 5955.

    32. [32]

      Handzlik, J.; Sautet, P. J. Catal. 2008, 256, 1.

    33. [33]

      Debecker, D. P.; Bouchmella, K.; Poleunis, C.; Eloy, P.; Bertrand, P.; Gaigneaux, E. M.; Mutin, P. M. Chem. Mater. 2009, 21, 2817.

    34. [34]

      Debecker, D. P.; Schimmoeller, B.; Stoyanova, M.; Poleunis, C.; Bertrand, P.; Rodemerck, U.; Gaigneaux, E. M. J. Catal. 2011, 277, 154.

    35. [35]

      Debecker, D. P.; Stoyanova, M.; Colbeau-Justin, F.; Rodemerck, U.; Boissière, C.; Gaigneaux, E. M.; Sanchez C. Angew. Chem. Int. Ed. 2012, 51, 2129.

    36. [36]

      Lin, C.; Tao, K.; Yu, H.; Hua, D. Catal. Sci. Technol. 2014, 4, 4010.

    37. [37]

      Chen, K.; Xie, S.; Iglesia, E.; Bell, A. T. J. Catal. 2000, 189, 421.

    38. [38]

      Abello, M. C.; Gomez, M. F.; Casella, M.; Ferretti, O. A.; Bañares, M. A.; Fierro, J. L. G. Appl. Catal. A 2003, 251, 435.

    39. [39]

      Heracleous, E.; Lee, A. F.; Vasalos, I. A.; Lemonidou, A. A. Catal. Lett. 2003, 88, 47.

    40. [40]

      Heracleous, E.; Vakros, J.; Lemonidou, A. A.; Kordulis, C. Catal. Today 2004, 91-92, 289.

    41. [41]

      Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.; Boghosian, S. J. Catal. 2006, 242, 16.

    42. [42]

      Christodoulakis, A.; Boghosian, S. J. Catal. 2008, 260, 178.

    43. [43]

      Chung, J. S.; Miranda, R.; Bennett, C. O. J. Catal. 1988, 114, 398.

    44. [44]

      Banares, M.; Hu, H.; Wachs, I. E. J. Catal. 1994, 150, 407.

    45. [45]

      Jehng, J. M.; Hu, H. C.; Gao, X. T.; Wachs, I. E. Catal. Today 1996, 28, 335.

    46. [46]

      Liu, H.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222.

    47. [47]

      Liu, H.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107, 4118.

    48. [48]

      Xu, Y.; Lin, L. Appl. Catal. A 1999, 188, 53.

    49. [49]

      Ma, D.; Shu, Y.; Bao, X.; Xu, Y. J. Catal. 2000, 189, 314.

    50. [50]

      Liu, H.; Shen, W.; Bao, X.; Xu, Y. J. Mol. Catal. A 2006, 244, 229.

    51. [51]

      Tessonnier, J. P.; Louis, B.; Rigolet, S.; Ledoux, M. J.; Pham-Huu, C. Appl. Catal. A 2008, 336, 79.

    52. [52]

      Gao, J.; Zheng, Y.; Jehng, J.-M.; Tang, Y.; Wachs, I. E.; Podkolzin, S. G. Science 2015, 348, 686.

    53. [53]

      Martínez, A.; Peris, E. Appl. Catal. A 2016, 515, 32.

    54. [54]

      Mestl, G.; Srinivasan, T. K. K. Catal. Rev. Sci. Eng. 1998, 40, 451.

    55. [55]

      Chempath, S.; Zhang, Y.; Bell, A. T. J. Phys. Chem. C 2007, 111, 1291.

    56. [56]

      Williams, C. C.; Ekerdt, J. G.; Jehng, J. M.; Hardcastle, F. D.; Turek, A. M.; Wachs, I. E. J. Phys. Chem. 1991, 95, 8781.

    57. [57]

      Radhakrishnan, R.; Reed, C.; Oyama, S. T.; Seman, M.; Kondo, J. N.; Domen, K.; Ohminami, Y.; Asakura, K. J. Phys. Chem. B 2001, 105, 8519.

    58. [58]

      Tian, H.; Roberts, C. A.; Wachs, I. E. J. Phys. Chem. C 2010, 114, 14110.

    59. [59]

      Thielemann, J. P.; Ressler, T.; Walter, A.; Tzolova-Müller, A.; Hess, C. Appl. Catal. A 2011, 399, 28.

    60. [60]

      Tsilomelekis, G.; Boghosian, S. Catal. Sci. Technol. 2013, 3, 1869.

    61. [61]

      Tang, B.; Dai, W.-L.; Sun, X.-M.; Guan, N.-J.; Li, L.-D.; Hunger, M. Green Chem. 2014, 14, 2281.

    62. [62]

      Tang, B.; Dai, W.-L.; Wu, G.-J.; Guan, N.-J.; Li, L.-D.; Hunger, M. ACS Catal. 2014, 4, 2801.

    63. [63]

      Tang, B.; Dai, W.-L.; Sun, X.-M.; Wu, G.-J.; Guan, N.; Hunger, M.; Li, L.-D. Green Chem. 2015, 17, 1744.

    64. [64]

      Song, S.; Wu, G.-J.; Dai, W.-L.; Guan, N.-J.; Li, L.-D. Catal. Sci. Technol. 2016, 6, 8325.

    65. [65]

      Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537.

    66. [66]

      Srebowata, A.; Baran, R.; Lomot, D.; Lisovytskiy, D.; Onfroy, T.; Dzwigaj, S. Appl. Catal. B 2014, 147, 208.

    67. [67]

      Li, P.; Liu, G.; Wu, H.; Liu, Y.; Jiang, J.; Wu, P. J. Phys. Chem. C 2011, 115, 3663.

    68. [68]

      Dijkmans, J.; Gabriëls, D.; Dusselier, M.; Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B. F. Green Chem. 2013, 15, 2777.

    69. [69]

      Hammond, C.; Conrad, S.; Hermans, I. Angew. Chem. Int. Ed. 2012, 51, 11736.

    70. [70]

      Higashimoto, S.; Hu, Y.; Tsumura, R.; Iino, K.; Matsuoka, M.; Yamashita, H.; Shul, Y. G.; Che, M.; Anpo, M. J. Catal. 2005, 235, 272.

    71. [71]

      Verbruggen, N. F. D.; Knözinger, H. Langmuir 1994, 10, 3148.

    72. [72]

      Amakawa, K.; Sun, L.; Guo, C.; Hävecker, M.; Kube, P.; Wachs, I. E.; Lwin, S.; Frenkel, A. I.; Patlolla, A.; Hermann, K.; Schlögl, R.; Trunschke, A. Angew. Chem. Int. Ed. 2013, 52, 13553.

    73. [73]

      Dzwigaj, S.; Millot, Y.; Krafft, J. M.; Popovych, N.; Kyriienko, P. J. Phys. Chem. C 2013, 117, 12552.

    74. [74]

      Fournier, M.; Louis, C.; Che, M.; Chaquin, P.; Masure, D. J. Catal. 1989, 119, 400.

    75. [75]

      Seyedmonir, S. R.; Howe, R. F. J. Catal. 1988, 110, 216.

    76. [76]

      Irurzun, V. M.; Tan, Y.; Resasco, D. E. Chem. Mater. 2009, 21, 2238.

    77. [77]

      Tauc, J. Amorphous and Liquid Semiconductors, Plenum, London, 1974.

    78. [78]

      Bazyari, A.; Khodadadi, A. A.; Mamaghani, A. H.; Beheshtian, J.; Thompson, L.; Mortazavi, Y. Appl. Catal. B 2016, 180, 65.

    79. [79]

      Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.-H.; Ishihara, A.; Imai, T.; Kabe, T. Energy Fuels 2000, 14, 1232.

    80. [80]

      Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. B 2019, 253, 309.

    81. [81]

      Mokhtari, B.; Akbari, A.; Omidkhah, M. Energy Fuels 2019, 33, 7276.

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(35)
  • Abstract views(3470)
  • HTML views(341)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return