Citation: Jiang Dan-Ni, Yan Kang-Rong, Li Chang-Zhi. Doping of Organic Semiconductors with Lewis Base Anions: Mechanism, Applications and Perspectives[J]. Acta Chimica Sinica, ;2020, 78(12): 1287-1296. doi: 10.6023/A20080342 shu

Doping of Organic Semiconductors with Lewis Base Anions: Mechanism, Applications and Perspectives

  • Corresponding author: Li Chang-Zhi, czli@zju.edu.cn
  • Received Date: 2 August 2020
    Available Online: 4 September 2020

    Fund Project: Zhejiang Natural Science Fund for Distinguished Young Scholars LR17E030001Project supported by the National Natural Science Foundation of China (Nos. 21722404, 21674093), and Zhejiang Natural Science Fund for Distinguished Young Scholars (No. LR17E030001)the National Natural Science Foundation of China 21722404the National Natural Science Foundation of China 21674093

Figures(8)

  • Doping is an effective method to improve the carrier densities and charge transport capabilities of organic semiconductors. In recent years, n-doping of organic semiconductors via Lewis base anions has attracted much attentions of researchers, which takes place under mild condition and controllable fashion, hence exhibiting broad applications in optoelectronics. This perspective focuses on discussing the mechanism of anion-induced electron transfer to semiconductors, summarizing its recent progresses in interfacial materials and doped active layers for optoelectronic devices, as well as analyzing the future development of this field.
  • 加载中
    1. [1]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.

    2. [2]

      Ding, L.; Wang, Z.-Y.; Wang, J.-Y.; Pei, J. Chin. J. Chem . 2020, 38, 13.

    3. [3]

      Wang, Y.; Zheng, L.; Li, J.; Liu, C.; Yao, J. Chin. J. Org. Chem. 2018, 38, 3143 (in Chinese).

    4. [4]

      Lussem, B.; Keum, C. M.; Kasemann, D.; Naab, B.; Bao, Z.; Leo, K. Chem. Rev. 2016, 116, 13714.

    5. [5]

      Bin, Z. Y.; Liu, Z. Y.; Qiu, Y.; Duan, L. Adv. Opt. Mater. 2018, 6, 1800536.

    6. [6]

      Li, C. Z.; Chueh, C. C.; Yip, H. L.; O'Malley, K. M.; Chen, W. C.; Jen, A. K. Y. J. Mater. Chem. 2012, 22, 8574.

    7. [7]

      Li, C. Z.; Chueh, C. C.; Yip, H. L.; Ding, F.; Li, X.; Jen, A. K. Adv. Mater. 2013, 25, 2457.

    8. [8]

      Li, C. Z.; Chueh, C. C.; Ding, F.; Yip, H. L.; Liang, P. W.; Li, X.; Jen, A. K. Adv. Mater. 2013, 25, 4425.

    9. [9]

      Li, C. Z.; Chang, C. Y.; Zang, Y.; Ju, H. X.; Chueh, C. C.; Liang, P. W.; Cho, N.; Ginger, D. S.; Jen, A. K. Adv. Mater. 2014, 26, 6262.

    10. [10]

      Chueh, C. C.; Li, C. Z.; Ding, F.; Li, Z.; Cernetic, N.; Li, X.; Jen, A. K. ACS Appl. Mater. Interfaces 2017, 9, 1136.

    11. [11]

      Cho, N.; Li, C.-Z.; Yip, H.-L.; Jen, A. K. Y. Energy Environ. Sci. 2014, 7, 638.

    12. [12]

      Chueh, C.-C.; Li, C.-Z.; Jen, A. K. Y. Energy Environ. Sci. 2015, 8, 1160.

    13. [13]

      Yan, K.; Li, C. Z. Macromol. Chem. Phys. 2019, 220, 1900084.

    14. [14]

      Yan, K.; Liu, Z.-X.; Li, X.; Chen, J.; Chen, H.; Li, C.-Z. Org. Chem. Front. 2018, 5, 2845.

    15. [15]

      Yen, H. J.; Liang, P. W.; Chueh, C. C.; Yang, Z.; Jen, A. K.; Wang, H. L. ACS Appl. Mater. Interfaces 2016, 8, 14513.

    16. [16]

      O'Malley, K. M.; Li, C.-Z.; Yip, H.-L.; Jen, A. K. Y. Adv. Energy Mater. 2012, 2, 82.

    17. [17]

      Li, S.; Fan, K.; Cui, Y.; Leng, S.; Ying, Y.; Zou, W.; Liu, Z.; Li, C.-Z.; Yao, K.; Huang, H. ACS Energy Lett. 2020, 5, 2015.

    18. [18]

      Huang, J.; Yu, X.; Xie, J.; Li, C. Z.; Zhang, Y.; Xu, D.; Tang, Z.; Cui, C.; Yang, D. ACS Appl. Mater. Interfaces 2016, 8, 34612.

    19. [19]

      Yan, K.; Chen, J.; Ju, H.; Ding, F.; Chen, H.; Li, C.-Z. J. Mater. Chem. A 2018, 6, 15495.

    20. [20]

      Said, A. A.; Xie, J.; Zhang, Q. Small 2019, 15, 1900854.

    21. [21]

      Li, C. Z.; Huang, J.; Ju, H.; Zang, Y.; Zhang, J.; Zhu, J.; Chen, H.; Jen, A. K. Adv. Mater. 2016, 28, 7269.

    22. [22]

      Chen, F. X.; Xu, J. Q.; Liu, Z. X.; Chen, M.; Xia, R.; Yang, Y.; Lau, T. K.; Zhang, Y.; Lu, X.; Yip, H. L.; Jen, A. K.; Chen, H.; Li, C. Z. Adv. Mater. 2018, 30, 1803769.

    23. [23]

      Liu, Z. X.; Lau, T. K.; Zhou, G. Q.; Li, S. X.; Ren, J.; Das, S. K.; Xia, R. X.; Wu, G.; Zhu, H. M.; Lu, X. H.; Yip, L.; Chen, H. Z.; Li, C. Z. Nano Energy 2019, 63, 103807.

    24. [24]

      Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Nat. Commun. 2019, 10, 2152.

    25. [25]

      Chen, F.-X.; Qin, R.; Xia, R.; Zhang, Y.; Zuo, L.; Yip, H.-L.; Chen, H.; Li, C.-Z. ACS Energy Lett. 2020, 5, 1771.

    26. [26]

      Xu, Y.; Yuan, J.; Sun, J.; Zhang, Y.; Ling, X.; Wu, H.; Zhang, G.; Chen, J.; Wang, Y.; Ma, W. ACS Appl. Mater. Interfaces 2018, 10, 2776.

    27. [27]

      Yuan, M.; Voznyy, O.; Zhitomirsky, D.; Kanjanaboos, P.; Sargent, E. H. Adv. Mater. 2015, 27, 917.

    28. [28]

      (a) Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Adv. Mater. 2020, 32, 1908205. (b) Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Science 2020, 370, 108.

    29. [29]

      Kyaw, A. K. K.; Sun, X. W.; Jiang, C. Y.; Lo, G. Q.; Zhao, D. W.; Kwong, D. L. Appl. Phys. Lett. 2008, 93, 221107.

    30. [30]

      Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2783.

    31. [31]

      Huang, J.; Zhang, X. H.; Zheng, D.; Yan, K.; Li, C. Z. R.; Yu, J. S. Solar RRL 2017, 1, 1600008.

    32. [32]

      Huang, J.; Wang, H.; Yan, K.; Zhang, X.; Chen, H.; Li, C. Z.; Yu, J. Adv. Mater. 2017, 29, 1606729.

    33. [33]

      Liu, H.; Liu, Z. X.; Wang, S.; Huang, J.; Ju, H.; Chen, Q.; Yu, J.; Chen, H.; Li, C. Z. Adv. Energy Mater. 2019, 9, 1900887.

    34. [34]

      Yang, T. B.; Wang, M.; Duan, C. H.; Hu, X. W.; Huang, L.; Peng, J. B.; Huang, F.; Gong, X. Energy Environ. Sci. 2012, 5, 8208.

    35. [35]

      Kang, H.; Hong, S.; Lee, J.; Lee, K. Adv. Mater. 2012, 24, 3005.

    36. [36]

      Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll, M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.; Barlow, S.; Graham, S.; Bredas, J. L.; Marder, S. R.; Kahn, A.; Kippelen, B. Science 2012, 336, 327.

    37. [37]

      Guha, S.; Goodson, F. S.; Corson, L. J.; Saha, S. J. Am. Chem. Soc. 2012, 134, 13679.

    38. [38]

      Saha, S. Acc. Chem. Res. 2018, 51, 2225.

    39. [39]

      Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2016, 138, 2004.

    40. [40]

      Tang, C. G.; Syafiqah, M. N.; Koh, Q. M.; Zhao, C.; Zaini, J.; Seah, Q. J.; Cass, M. J.; Humphries, M. J.; Grizzi, I.; Burroughes, J. H.; Png, R. Q.; Chua, L. L.; Ho, P. K. H. Nature 2019, 573, 519.

    41. [41]

      Yip, H. L.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 5994.

    42. [42]

      Yu, Z.-P.; Li, X.; He, C.; Wang, D.; Qin, R.; Zhou, G.; Liu, Z.-X.; Andersen, T. R.; Zhu, H.; Chen, H.; Li, C.-Z. Chin. Chem. Lett. 2020, 31, 1991.

    43. [43]

      Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H. L.; Chen, H.; Li, C. Z. Adv. Mater. 2020, 2001621.

    44. [44]

      Cui, C. H.; Li, Y. W.; Li, Y. F. Adv. Energy Mater. 2017, 7, 1601251.

    45. [45]

      Yao, K.; Salvador, M.; Chueh, C. C.; Xin, X. K.; Xu, Y. X.; deQuilettes, D. W.; Hu, T.; Chen, Y. W.; Ginger, D. S.; Jen, A. K. Y. Adv. Energy Mater. 2014, 4, 1400206.

    46. [46]

      Jiao, W.; Ma, D.; Lv, M.; Chen, W.; Wang, H.; Zhu, J.; Lei, M.; Chen, X. J. Mater. Chem. A 2014, 2, 14720.

    47. [47]

      Zhang, J. W.; Xue, R. M.; Xu, G. Y.; Chen, W. J.; Bian, G. Q.; Wei, C. A.; Li, Y. W.; Li, Y. F. Adv. Funct. Mater. 2018, 28, 1705847.

    48. [48]

      Wang, H. H.; Sun, X.; Lin, Z. C.; Pang, Z. F.; Kong, X. Q.; Lei, M.; Li, Y. F. RSC Adv. 2018, 8, 9503.

    49. [49]

      Sun, X.; Ji, L. Y.; Chen, W. W.; Guo, X.; Wang, H. H.; Lei, M.; Wang, Q.; Li, Y. F. J. Mater. Chem. A 2017, 5, 20720.

    50. [50]

      Li, S.; Lei, M.; Lv, M.; Watkins, S. E.; Tan, Z.; Zhu, J.; Hou, J.; Chen, X.; Li, Y. Adv. Energy Mater. 2013, 3, 1569.

    51. [51]

      Liu, J.; Li, J.; Liu, X.; Li, F.; Tu, G. ACS Appl. Mater. Interfaces 2018, 10, 2649.

    52. [52]

      Chen, Q.; Worfolk, B. J.; Hauger, T. C.; Al-Atar, U.; Harris, K. D.; Buriak, J. M. ACS Appl. Mater. Interfaces 2011, 3, 3962.

    53. [53]

      Reilly, T. H.; Hains, A. W.; Chen, H.-Y.; Gregg, B. A. Adv. Energy Mater. 2012, 2, 455.

    54. [54]

      Hu, Z.; Xu, R.; Dong, S.; Lin, K.; Liu, J.; Huang, F.; Cao, Y. Mater. Horiz. 2017, 4, 88.

    55. [55]

      Liu, Y.; Cole, M. D.; Jiang, Y.; Kim, P. Y.; Nordlund, D.; Emrick, T.; Russell, T. P. Adv. Mater. 2018, 30, 1705976.

    56. [56]

      Hu, Z.; Zhang, K.; Huang, F.; Cao, Y. Chem. Commun. 2015, 51, 5572.

    57. [57]

      Bi, S.; Leng, X.; Li, Y.; Zheng, Z.; Zhang, X.; Zhang, Y.; Zhou, H. Adv. Mater. 2019, 31, 1805708.

    58. [58]

      Wang, R.; Zhang, D. Y.; Xie, S. K.; Wang, J. Q.; Zheng, Z.; Wei, D. H.; Sun, X. B.; Zhou, H. Q.; Zhang, Y. Nano Energy 2018, 51, 736.

    59. [59]

      Wang, R.; Wang, B.; Wang, J.; Zhang, X.; Zhang, D.; Wei, D.; Sun, X.; Zhou, H.; Zhang, Y. J. Mater. Chem. A 2019, 7, 25808.

    60. [60]

      Mei, Q.; Li, C.; Gong, X.; Lu, H.; Jin, E.; Du, C.; Lu, Z.; Jiang, L.; Meng, X.; Wang, C.; Bo, Z. ACS Appl. Mater. Interfaces 2013, 5, 8076.

    61. [61]

      Zhang, G. C.; Xia, R. X.; Chen, Z.; Xiao, J. Y.; Zhao, X. N.; Liu, S. Y.; Yip, H. L.; Cao, Y. Adv. Energy Mater. 2018, 8, 1801609.

    62. [62]

      Deschler, F.; Da Como, E.; Limmer, T.; Tautz, R.; Godde, T.; Bayer, M.; von Hauff, E.; Yilmaz, S.; Allard, S.; Scherf, U.; Feldmann, J. Phys. Rev. Lett. 2011, 107, 127402.

    63. [63]

      Yan, H.; Chen, J. Y.; Zhou, K.; Tang, Y. B.; Meng, X. Y.; Xu, X. B.; Ma, W. Adv. Energy Mater. 2018, 8, 1703672.

    64. [64]

      Lin, Y.; Firdaus, Y.; Nugraha, M. I.; Liu, F.; Karuthedath, S.; Emwas, A. H.; Zhang, W.; Seitkhan, A.; Neophytou, M.; Faber, H.; Yengel, E.; McCulloch, I.; Tsetseris, L.; Laquai, F.; Anthopoulos, T. D. Adv. Sci. 2020, 7, 1903419.

    65. [65]

      Shang, Z. R.; Heumueller, T.; Prasanna, R.; Burkhard, G. F.; Naab, B. D.; Bao, Z. N.; McGehee, M. D.; Salleo, A. Adv. Energy Mater. 2016, 6, 1601149.

    66. [66]

      Yan, H.; Manion, J. G.; Yuan, M.; Garcia de Arquer, F. P.; McKeown, G. R.; Beaupre, S.; Leclerc, M.; Sargent, E. H.; Seferos, D. S. Adv. Mater. 2016, 28, 6491.

    67. [67]

      Tang, Y.; Lin, B.; Zhao, H.; Li, T.; Ma, W.; Yan, H. ACS Appl. Mater. Interfaces 2020, 12, 13021.

    68. [68]

      Yan, H.; Tang, Y.; Sui, X.; Liu, Y.; Gao, B.; Liu, X.; Liu, S. F.; Hou, J.; Ma, W. ACS Energy Lett. 2019, 4, 1356.

    69. [69]

      Chen, Z.; Tang, Y.; Lin, B.; Zhao, H.; Li, T.; Min, T.; Yan, H.; Ma, W. ACS Appl. Mater. Interfaces 2020, 12, 25115.

    70. [70]

      Yang, C. Y.; Ding, Y. F.; Huang, D.; Wang, J.; Yao, Z. F.; Huang, C. X.; Lu, Y.; Un, H. I.; Zhuang, F. D.; Dou, J. H.; Di, C. A.; Zhu, D.; Wang, J. Y.; Lei, T.; Pei, J. Nat. Commun. 2020, 11, 3292.

    71. [71]

      Lu, Y.; Yu, Z. D.; Liu, Y.; Ding, Y. F.; Yang, C. Y.; Yao, Z. F.; Wang, Z. Y.; You, H. Y.; Cheng, X. F.; Tang, B.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2020, 142, 15340.

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

Metrics
  • PDF Downloads(176)
  • Abstract views(4868)
  • HTML views(1339)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return