Citation: Chen Guanghui, He Yanping, Zhang Lei, Zhang Jian. Syntheses and Structural Studies of a Series of Ti4(embonate)6-based Complexes[J]. Acta Chimica Sinica, ;2020, 78(12): 1411-1417. doi: 10.6023/A20070337 shu

Syntheses and Structural Studies of a Series of Ti4(embonate)6-based Complexes

  • Corresponding author: He Yanping, hyp041@163.com Zhang Jian, zhj@fjirsm.ac.cn
  • Received Date: 31 July 2020
    Available Online: 6 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21935010)the National Natural Science Foundation of China 21935010

Figures(6)

  • Metal-organic cages (MOCs) as a new type of molecular containers have attracted great interest because of their special cavities and wide applications in molecule recognition and separation, drug delivery and catalysis, etc. However, in the past decades, most researchers just devote to constructing discrete MOCs with special functions. Since many cage compounds are not soluble and stable in the solvent, the further assembly of cages into advanced materials is relatively less developed. In our previous study, we reported a water-soluble and ultrastable Ti4L6 (L=embonate) tetrahedron with coordination assembly function, which has been applied as the starting material to realize coordination assembly with different metal ions through two-step reaction. In this work, by employing the Ti4L6 cages to assemble with Mn2+, Nd3+, Ba2+ and Ca2+ ions, respectively, a series of Ti4L6-based complexes have been synthesized under different solvothermal reaction conditions, namely, (Me2NH2)9(Me4N)[Mn3(Ti4L6)2(H2O)9(DMF)6]·Guests (PTC-241, DMF=N, N-dimethylformamide); (Me2NH2)5- [Nd(Ti4L6)(H2O)2(DMF)5]·Guests (PTC-242); (Me2NH2)2[Ba4(Ti4L6)(OH)2(H2O)8(TEA)5]·Guests (PTC-243, TEA=Triethanolamine); (Me2NH2)2[Ca3(Ti4L6)(H2O)8(DEA)2]·Guests (PTC-242, DEA=Diethanolamine); (Me2NH2)2[Ca3(Ti4L6)-(H2O)15]·Guests (PTC-245). Their structures were characterized by X-ray single crystal diffraction, thermo gravimetric analyzer (TGA), infrared spectroscopy (IR) and powder X-ray diffraction (PXRD). Single-crystal analysis reveals that PTC-241 is a supramolecular homochiral architecture formed by the staggered accumulation of ΔΔΔΔ-[Ti4L6] and ΔΔΔΔ-[Ti4L6]-Mn3 cages by weak interactions (such as hydrogen bonding and π-π stacking). PTC-242 is also a supramolecular structure, in which the Ti4L6-Nd cages are linked by (Me2NH2)+ cations and ethanediamine (en) molecules via the weak N-H…O hydrogen bonding force, giving rise to a 3D H-bonding framework with a honeycomb lattice of hexagonal channels along the b axis. PTC-243 is a linear Ti4L6-Ba4 chain structure. Both PTC-242 and PTC-245 are two-dimensional (2D) Ti4L6-Ca3 layers with honeycomb-like structures. In addition, we also investigated the fluorescent properties of PTC-242 and PTC-245 in the solid state, and the results show that both of them display strong emitting bands in the visible region.
  • 加载中
    1. [1]

      Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001.

    2. [2]

      Castilla, A. M.; Ramsay, W. J.; Nitschke, J. R. Acc. Chem. Res. 2014, 47, 2063.

    3. [3]

      Sun, Y. Y.; Zhuo, C.; Wang, F.; Zhang, J. Chin. J. Chem. 2020, 38, 449.

    4. [4]

      Liu, J. B.; Li, P.; Yao, Z. J. Chin. J. Org. Chem. 2020, 40, 364(in Chinese).

    5. [5]

      Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242(in Chinese).

    6. [6]

      Saha, M. L.; Yan, X.; Stang, P. J. Acc. Chem. Res. 2016, 49, 2527.

    7. [7]

      Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750.

    8. [8]

      Cullen, W.; Turega, S.; Hunter, C. A.; Ward, M. D. Chem. Sci. 2015, 6, 625.

    9. [9]

      Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem. Int. Ed. 2009, 48, 3418.

    10. [10]

      Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012.

    11. [11]

      Sun, W.; Ye, L.; Liu, J.; Zheng, L.; Guo, W.; Han, S.; Shao, C.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 2867(in Chinese).

    12. [12]

      Li, Y.; Zhang, W.; Liu, Z.; Xie, Z. Acta Chim. Sinica 2015, 73, 641(in Chinese).

    13. [13]

      Lorzing, G. R.; Gosselin, E. J.; Trump, B. A.; York, A. H. P.; Sturluson, A.; Rowland, C. A.; Yap, G. P. A.; Brown, C. M.; Simon, C. M.; Bloch, E. D. J. Am. Chem. Soc. 2019, 141, 12128.

    14. [14]

      Niu, Z.; Wang, L.; Fang, S.; Lan, P. C.; Aguila, B.; Perman, J.; Ma, J.-G.; Cheng, P.; Li, X.; Ma, S. Chem. Sci. 2019, 10, 6661.

    15. [15]

      Frischmann, P. D.; Kunz, V.; Wurthner, F. Angew. Chem. Int. Ed. 2015, 54, 7285.

    16. [16]

      Endo, K.; Ube, H.; Shionoya, M. J. Am. Chem. Soc. 2020, 142, 407.

    17. [17]

      Fleming, J. S.; Mann, K. L. V.; Carraz, C.-A.; Psillakis, E.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D. Angew. Chem. Int. Ed. 1998, 37, 1279.

    18. [18]

      Zhu, H.-B.; Wu, Y.-F.; Lou, Y.-B.; Hu, J. Synth. Met. 2014, 190, 34.

    19. [19]

      Zarra, S.; Smulders, M. M.; Lefebvre, Q.; Clegg, J. K.; Nitschke, J. R. Angew. Chem. Int. Ed. 2012, 51, 6882.

    20. [20]

      Young, M. C.; Holloway, L. R.; Johnson, A. M.; Hooley, R. J. Angew. Chem. Int. Ed. 2014, 53, 9832.

    21. [21]

      Wan, S.; Lin, L. R.; Zeng, L.; Lin, Y.; Zhang, H. Chem. Commun. 2014, 50, 15301.

    22. [22]

      Wang, J.; He, C.; Wu, P.; Wang, J.; Duan, C. J. Am. Chem. Soc. 2011, 133, 12402.

    23. [23]

      Yan, L. L.; Tan, C. H.; Zhang, G. L.; Zhou, L. P.; Bunzli, J. C.; Sun, Q. F. J. Am. Chem. Soc. 2015, 137, 8550.

    24. [24]

      Li, K.; Zhang, L. Y.; Yan, C.; Wei, S. C.; Pan, M.; Zhang, L.; Su, C. Y. J. Am. Chem. Soc. 2014, 136, 4456.

    25. [25]

      Loffler, S.; Lubben, J.; Krause, L.; Stalke, D.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2015, 137, 1060.

    26. [26]

      Bhat, I. A.; Samanta, D.; Mukherjee, P. S. J. Am. Chem. Soc. 2015, 137, 9497.

    27. [27]

      Schweiger, M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. Angew. Chem. Int. Ed. 2001, 40, 3467.

    28. [28]

      Yuan, Q.-H.; Wan, L.-J.; Jude, H.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 16279.

    29. [29]

      Brückner, C.; Powers, R. E.; Raymond, K. N. Angew. Chem. Int. Ed. 1998, 37, 1837.

    30. [30]

      Davis, A. V.; Raymond, K. N. J. Am. Chem. Soc. 2005, 127, 7912.

    31. [31]

      Albrecht, M.; Janser, I.; Burk, S.; Weis, P. Dalton Trans. 2006, 2875.

    32. [32]

      Albrecht, M.; Burk, S.; Weis, P. Synthesis 2008, 18, 2963.

    33. [33]

      Zhu, B. C.; Fang, W. H.; Wang, J.; Du, Y.; Zhou, T.; Wu, K.; Zhang, L.; Zhang, J. Chem. Eur. J. 2018, 24, 14358.

    34. [34]

      Li, J.-R.; Timmons, D. J.; Zhou, H.-C. J. Am. Chem. Soc. 2009, 131, 6368.

    35. [35]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Lin, Q. P.; Wang, F.; Zhang, L.; Zhang, J. J. Am. Chem. Soc. 2017, 139, 16845.

    36. [36]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Zhang, L.; Zhang, J. Isr. J. Chem. 2018, 59, 233.

    37. [37]

      Chen, G.-H.; Li, H.-Z.; He, Y.-P.; Zhang, S.-H.; Yi, X.; Liang, F.-P.; Zhang, L.; Zhang, J. Cryst. Growth Des. 2020, 20, 29.

    38. [38]

      He, Y. P.; Chen, G. H.; Yuan, L. B.; Zhang, L.; Zhang, J. Inorg. Chem. 2020, 59, 964.

    39. [39]

      He, Y.-P.; Yuan, L.-B.; Song, J.-S.; Chen, G.-H.; Lin, Q.; Li, C.; Zhang, L.; Zhang, J. Chem. Mater. 2018, 30, 7769.

    40. [40]

      Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.-P; Nichol, G.; Huang, R.-B.; Zheng, L.-S. Inorg. Chem. 2008, 47, 2728.

    41. [41]

      Poncelet, O.; Hubert-Pfalzgraf, L. G.; Toupet, L.; Daran, J. C. Polyhedron 1991, 10, 2045.

    42. [42]

      Taeb, A.; Krischner, H.; Kratky, C. Zeitschrift Für Kristallographie 1986, 177, 263.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(38)
  • Abstract views(2492)
  • HTML views(362)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return