Citation: Chen Guanghui, He Yanping, Zhang Lei, Zhang Jian. Syntheses and Structural Studies of a Series of Ti4(embonate)6-based Complexes[J]. Acta Chimica Sinica, ;2020, 78(12): 1411-1417. doi: 10.6023/A20070337 shu

Syntheses and Structural Studies of a Series of Ti4(embonate)6-based Complexes

  • Corresponding author: He Yanping, hyp041@163.com Zhang Jian, zhj@fjirsm.ac.cn
  • Received Date: 31 July 2020
    Available Online: 6 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21935010)the National Natural Science Foundation of China 21935010

Figures(6)

  • Metal-organic cages (MOCs) as a new type of molecular containers have attracted great interest because of their special cavities and wide applications in molecule recognition and separation, drug delivery and catalysis, etc. However, in the past decades, most researchers just devote to constructing discrete MOCs with special functions. Since many cage compounds are not soluble and stable in the solvent, the further assembly of cages into advanced materials is relatively less developed. In our previous study, we reported a water-soluble and ultrastable Ti4L6 (L=embonate) tetrahedron with coordination assembly function, which has been applied as the starting material to realize coordination assembly with different metal ions through two-step reaction. In this work, by employing the Ti4L6 cages to assemble with Mn2+, Nd3+, Ba2+ and Ca2+ ions, respectively, a series of Ti4L6-based complexes have been synthesized under different solvothermal reaction conditions, namely, (Me2NH2)9(Me4N)[Mn3(Ti4L6)2(H2O)9(DMF)6]·Guests (PTC-241, DMF=N, N-dimethylformamide); (Me2NH2)5- [Nd(Ti4L6)(H2O)2(DMF)5]·Guests (PTC-242); (Me2NH2)2[Ba4(Ti4L6)(OH)2(H2O)8(TEA)5]·Guests (PTC-243, TEA=Triethanolamine); (Me2NH2)2[Ca3(Ti4L6)(H2O)8(DEA)2]·Guests (PTC-242, DEA=Diethanolamine); (Me2NH2)2[Ca3(Ti4L6)-(H2O)15]·Guests (PTC-245). Their structures were characterized by X-ray single crystal diffraction, thermo gravimetric analyzer (TGA), infrared spectroscopy (IR) and powder X-ray diffraction (PXRD). Single-crystal analysis reveals that PTC-241 is a supramolecular homochiral architecture formed by the staggered accumulation of ΔΔΔΔ-[Ti4L6] and ΔΔΔΔ-[Ti4L6]-Mn3 cages by weak interactions (such as hydrogen bonding and π-π stacking). PTC-242 is also a supramolecular structure, in which the Ti4L6-Nd cages are linked by (Me2NH2)+ cations and ethanediamine (en) molecules via the weak N-H…O hydrogen bonding force, giving rise to a 3D H-bonding framework with a honeycomb lattice of hexagonal channels along the b axis. PTC-243 is a linear Ti4L6-Ba4 chain structure. Both PTC-242 and PTC-245 are two-dimensional (2D) Ti4L6-Ca3 layers with honeycomb-like structures. In addition, we also investigated the fluorescent properties of PTC-242 and PTC-245 in the solid state, and the results show that both of them display strong emitting bands in the visible region.
  • 加载中
    1. [1]

      Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001.

    2. [2]

      Castilla, A. M.; Ramsay, W. J.; Nitschke, J. R. Acc. Chem. Res. 2014, 47, 2063.

    3. [3]

      Sun, Y. Y.; Zhuo, C.; Wang, F.; Zhang, J. Chin. J. Chem. 2020, 38, 449.

    4. [4]

      Liu, J. B.; Li, P.; Yao, Z. J. Chin. J. Org. Chem. 2020, 40, 364(in Chinese).

    5. [5]

      Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242(in Chinese).

    6. [6]

      Saha, M. L.; Yan, X.; Stang, P. J. Acc. Chem. Res. 2016, 49, 2527.

    7. [7]

      Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750.

    8. [8]

      Cullen, W.; Turega, S.; Hunter, C. A.; Ward, M. D. Chem. Sci. 2015, 6, 625.

    9. [9]

      Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem. Int. Ed. 2009, 48, 3418.

    10. [10]

      Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012.

    11. [11]

      Sun, W.; Ye, L.; Liu, J.; Zheng, L.; Guo, W.; Han, S.; Shao, C.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 2867(in Chinese).

    12. [12]

      Li, Y.; Zhang, W.; Liu, Z.; Xie, Z. Acta Chim. Sinica 2015, 73, 641(in Chinese).

    13. [13]

      Lorzing, G. R.; Gosselin, E. J.; Trump, B. A.; York, A. H. P.; Sturluson, A.; Rowland, C. A.; Yap, G. P. A.; Brown, C. M.; Simon, C. M.; Bloch, E. D. J. Am. Chem. Soc. 2019, 141, 12128.

    14. [14]

      Niu, Z.; Wang, L.; Fang, S.; Lan, P. C.; Aguila, B.; Perman, J.; Ma, J.-G.; Cheng, P.; Li, X.; Ma, S. Chem. Sci. 2019, 10, 6661.

    15. [15]

      Frischmann, P. D.; Kunz, V.; Wurthner, F. Angew. Chem. Int. Ed. 2015, 54, 7285.

    16. [16]

      Endo, K.; Ube, H.; Shionoya, M. J. Am. Chem. Soc. 2020, 142, 407.

    17. [17]

      Fleming, J. S.; Mann, K. L. V.; Carraz, C.-A.; Psillakis, E.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D. Angew. Chem. Int. Ed. 1998, 37, 1279.

    18. [18]

      Zhu, H.-B.; Wu, Y.-F.; Lou, Y.-B.; Hu, J. Synth. Met. 2014, 190, 34.

    19. [19]

      Zarra, S.; Smulders, M. M.; Lefebvre, Q.; Clegg, J. K.; Nitschke, J. R. Angew. Chem. Int. Ed. 2012, 51, 6882.

    20. [20]

      Young, M. C.; Holloway, L. R.; Johnson, A. M.; Hooley, R. J. Angew. Chem. Int. Ed. 2014, 53, 9832.

    21. [21]

      Wan, S.; Lin, L. R.; Zeng, L.; Lin, Y.; Zhang, H. Chem. Commun. 2014, 50, 15301.

    22. [22]

      Wang, J.; He, C.; Wu, P.; Wang, J.; Duan, C. J. Am. Chem. Soc. 2011, 133, 12402.

    23. [23]

      Yan, L. L.; Tan, C. H.; Zhang, G. L.; Zhou, L. P.; Bunzli, J. C.; Sun, Q. F. J. Am. Chem. Soc. 2015, 137, 8550.

    24. [24]

      Li, K.; Zhang, L. Y.; Yan, C.; Wei, S. C.; Pan, M.; Zhang, L.; Su, C. Y. J. Am. Chem. Soc. 2014, 136, 4456.

    25. [25]

      Loffler, S.; Lubben, J.; Krause, L.; Stalke, D.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2015, 137, 1060.

    26. [26]

      Bhat, I. A.; Samanta, D.; Mukherjee, P. S. J. Am. Chem. Soc. 2015, 137, 9497.

    27. [27]

      Schweiger, M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. Angew. Chem. Int. Ed. 2001, 40, 3467.

    28. [28]

      Yuan, Q.-H.; Wan, L.-J.; Jude, H.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 16279.

    29. [29]

      Brückner, C.; Powers, R. E.; Raymond, K. N. Angew. Chem. Int. Ed. 1998, 37, 1837.

    30. [30]

      Davis, A. V.; Raymond, K. N. J. Am. Chem. Soc. 2005, 127, 7912.

    31. [31]

      Albrecht, M.; Janser, I.; Burk, S.; Weis, P. Dalton Trans. 2006, 2875.

    32. [32]

      Albrecht, M.; Burk, S.; Weis, P. Synthesis 2008, 18, 2963.

    33. [33]

      Zhu, B. C.; Fang, W. H.; Wang, J.; Du, Y.; Zhou, T.; Wu, K.; Zhang, L.; Zhang, J. Chem. Eur. J. 2018, 24, 14358.

    34. [34]

      Li, J.-R.; Timmons, D. J.; Zhou, H.-C. J. Am. Chem. Soc. 2009, 131, 6368.

    35. [35]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Lin, Q. P.; Wang, F.; Zhang, L.; Zhang, J. J. Am. Chem. Soc. 2017, 139, 16845.

    36. [36]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Zhang, L.; Zhang, J. Isr. J. Chem. 2018, 59, 233.

    37. [37]

      Chen, G.-H.; Li, H.-Z.; He, Y.-P.; Zhang, S.-H.; Yi, X.; Liang, F.-P.; Zhang, L.; Zhang, J. Cryst. Growth Des. 2020, 20, 29.

    38. [38]

      He, Y. P.; Chen, G. H.; Yuan, L. B.; Zhang, L.; Zhang, J. Inorg. Chem. 2020, 59, 964.

    39. [39]

      He, Y.-P.; Yuan, L.-B.; Song, J.-S.; Chen, G.-H.; Lin, Q.; Li, C.; Zhang, L.; Zhang, J. Chem. Mater. 2018, 30, 7769.

    40. [40]

      Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.-P; Nichol, G.; Huang, R.-B.; Zheng, L.-S. Inorg. Chem. 2008, 47, 2728.

    41. [41]

      Poncelet, O.; Hubert-Pfalzgraf, L. G.; Toupet, L.; Daran, J. C. Polyhedron 1991, 10, 2045.

    42. [42]

      Taeb, A.; Krischner, H.; Kratky, C. Zeitschrift Für Kristallographie 1986, 177, 263.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    19. [19]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(52)
  • Abstract views(3405)
  • HTML views(479)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return