Citation: Cheng Lei, Zhou Qilin. Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation[J]. Acta Chimica Sinica, ;2020, 78(10): 1017-1029. doi: 10.6023/A20070335 shu

Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation

  • Corresponding author: Zhou Qilin, qlzhou@nankai.edu.cn
  • Received Date: 29 July 2020
    Available Online: 15 September 2020

    Fund Project: the National Natural Science Foundation of China 21790330Project supported by the National Natural Science Foundation of China (Nos. 21790332, 21790330)the National Natural Science Foundation of China 21790332

Figures(36)

  • Transition metal-catalyzed coupling reactions are powerful synthetic methods for the C-C bond formation. Many coupling reactions such as Heck reaction, Negishi coupling, and Suzuki coupling have been widely applied in the syntheses of pharmaceuticals, functional materials and fine chemicals. In those coupling reactions, a C(sp2)-C(sp2) bond is formed in high efficiency and selectivity. However, in contrast to the C(sp2)-C(sp2) couplings, the C(sp3)-C(sp3) couplings are more difficult and develop late. Because the C(sp3)-C(sp3) bonds are ubiquitous in organic compound, the C(sp3)-C(sp3) bond formation is the central task of research in organic chemistry. In the past two decades, a great effort has been devoted to the development of cross-coupling reactions between alkyls to construct C(sp3)-C(sp3) bonds and impressive progress has been achieved. Among the transition metal catalysts that have been used in the construction of C(sp3)-C(sp3) bonds, nickel was found to be a preferable one, exhibiting unique activity and selectivity. Nickel catalysts promote the activation of alkyl electrophiles via radical catalytic cycles and inhibit and/or manipulate β-H elimination reactions. Nickel has several variable valence states and can flexibly participate in tandem reactions and reductive cross-coupling reactions. All these characteristic natures contribute to the success of nickel catalysts in the construction of C(sp3)-C(sp3) bonds. In this review, we will describe the advances on the nickel-catalyzed C(sp3)-C(sp3) bond-forming reactions. The main contents of this review include:the cross-coupling of alkyl electrophiles with organometallic reagents; the coupling involving a C(sp3)-H bond activation in the presence of directing group; the coupling co-catalyzed by nickel and photocatalyst; the reductive coupling of two alkyl electrophiles; and the additions of nucleophiles or electrophiles to alkenes such as hydroalkylation and difunctionalization of alkenes. The review will focus on the latest developments of nickel-catalyzed alkyl coupling reactions in the past two decades. The mechanisms of each reaction are discussed in detail for understanding the reactions.
  • 加载中
    1. [1]

      For reviews on nickel catalysis: (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature, 2014, 509, 299. (b) Ananikov, V. P. ACS Catal. 2015, 5, 1964. (c) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124. (d) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230. (e) Modern Organonickel Chemistry, Eds.: Tamaru, Y., Wiley-VCH, Weinheim, 2005. (f) Nickel Catalysis in Organic Synthesis: Methods and Reactions, Eds.: Ogoshi, S., Wiley-VCH, Weinheim, 2020.

    2. [2]

      Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1996, 34, 2723.  doi: 10.1002/anie.199527231

    3. [3]

      (a) Giovannini, R.; Stüdemann, T.; Dussin, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 2387. (b) Giovannini, R.; Stüdemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999, 64, 3544. (c) Piber, M.; Jensen, A. E.; Rottl nder, M.; Knochel, P. Org. Lett. 1999, 1, 1323.

    4. [4]

      Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222.  doi: 10.1021/ja025828v

    5. [5]

      Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5749.  doi: 10.1002/anie.200352858

    6. [6]

      Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.  doi: 10.1021/ja0389366

    7. [7]

      (a) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602. (b) Smith, S. W.; Fu, G. C. Angew. Chem. Int. Ed. 2008, 47, 9334. (c) Vechorkin, O.; Hu, X. Angew. Chem. Int. Ed. 2009, 48, 2937.

    8. [8]

      Fisher, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.  doi: 10.1021/ja0506509

    9. [9]

      Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003.  doi: 10.1021/ja308460z

    10. [10]

      (a) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482. (b) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756. (c) Lundin, P. M.; Esquivias, J.; Fu, G. C. Angew. Chem. Int. Ed. 2009, 48, 154. (d) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645. (e) Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 5520. (f) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908. (g) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154. (h) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 5794. (i) Huo, H.; Gorsline, B. J.; Fu, G. C. Science 2020, 367, 559.

    11. [11]

      Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. Science, 2016, 354, 1265.  doi: 10.1126/science.aai8611

    12. [12]

      Schwarzwalder, G. M.; Matier, C. D.; Fu, G. C. Angew. Chem. Int. Ed. 2019, 58, 3571.  doi: 10.1002/anie.201814208

    13. [13]

      Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc. 2013, 135, 12004.  doi: 10.1021/ja4051923

    14. [14]

      Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.  doi: 10.1021/ja508718m

    15. [15]

      Hu, X. Chem. Sci. 2011, 2, 1867.

    16. [16]

      (a) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Acc. Chem. Res. 2015, 48, 2344. (b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.

    17. [17]

      (a) Guan, B.-T.; X, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268. (b) Yu, D.-G.; Wang, X.; Zhu, R.-L.; Luo, S.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638.

    18. [18]

      Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389.  doi: 10.1021/ja108547u

    19. [19]

      Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.  doi: 10.1126/science.aaf6123

    20. [20]

      Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P. J. Am. Chem. Soc. 2019, 141, 2257.  doi: 10.1021/jacs.9b00111

    21. [21]

      Zhan, B.-B.; Liu, B.; Hu, F.; Shi, B.-F. Sci. Chin. Chem. 2015, 60, 2097(in Chinese).

    22. [22]

      Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136, 1789.  doi: 10.1021/ja413131m

    23. [23]

      (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.

    24. [24]

      (a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052. (b) Tells, J. C.; Kelly, C. B.; Primer, D.V.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (c) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem. Int. Ed. 2019, 58, 6152.

    25. [25]

      Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.  doi: 10.1038/nature19056

    26. [26]

      Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.  doi: 10.1038/nature22813

    27. [27]

      Smith, R. T.; Zhang, X.; Rincón, J. A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; Frutos, O. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 17433.  doi: 10.1021/jacs.8b12025

    28. [28]

      For selected reviews of reductive cross-couplings: (a) Knappke, C. E. I.; Grupe, S.; G rtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Chem. Eur. J. 2014, 20, 6828. (b) Gu, J.; Wang, X.; Xue, W.; Gong, H. Org. Chem. Front. 2015, 2, 1411. (c) Wang, X.; Dai, Y.; Gong, H. Top. Curr. Chem. 2016, 374, 43. (d) Lucas, E. L.; Jarvo, E. R. Nat. Rev. Chem. 2017, 1, No. 0065. (e) Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. ACS Catal. 2020, 10, 8237.

    29. [29]

      Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org. Lett. 2011, 13, 2138.  doi: 10.1021/ol200617f

    30. [30]

      Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Chem. Sci. 2013, 4, 4022.  doi: 10.1039/c3sc51098k

    31. [31]

      Komeyama, K.; Michiyuki, T.; Osaka, I. ACS Catal. 2019, 9, 9285.  doi: 10.1021/acscatal.9b03352

    32. [32]

      (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (c) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333. (e) Yan, T.; Guironnet, D. Sci. Chin. Chem. 2020, 63, 755.

    33. [33]

      Wang, X.-X.; Lu, X.; Li. Y.; Wang, J.-W.; Fu, Y. Sci Chin. Chem.10.1007/s11426-020-9838-x.  doi: 10.1007/s11426-020-9838-x

    34. [34]

      Lu, X.; Xiao, B.; Zhang, Z.-Q.; Gong, T.-J.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat. Commun. 2016, 7, 11129.  doi: 10.1038/ncomms11129

    35. [35]

      Zhou, F.; Zhu, J.; Zhang, Y.; Zhu, S. Angew. Chem. Int Ed. 2018, 57, 4058.  doi: 10.1002/anie.201712731

    36. [36]

      Wang, Z.-Y.; Wan, J.-H.; Wang, G.-Y.; Wang, R.; Jin, R.-X.; Lan, Q.; Wang, X.-S. Tetrahedron Lett. 2018, 59, 2302.  doi: 10.1016/j.tetlet.2018.05.008

    37. [37]

      (a) Sun, S.-Z.; Borjesson, M.; Martin-Montero, R.; Martin, R. J. Am. Chem. Soc. 2018, 140, 12765. (b) Qian, D.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 18519.

    38. [38]

      Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.  doi: 10.1002/chem.201602486

    39. [39]

      Sun, S.-Z.; Romano, C.; Martin, R. J. Am. Chem. Soc. 2019, 141, 16197.  doi: 10.1021/jacs.9b07489

    40. [40]

      Wang, Z.; Yin, H.; Fu, G. C. Nature 2018, 563, 379.  doi: 10.1038/s41586-018-0669-y

    41. [41]

      Zhou, F.; Zhang, Y.; Xu, X.; Zhu, S. Angew. Chem. Int. Ed. 2019, 58, 1754.  doi: 10.1002/anie.201813222

    42. [42]

      He, S.-J.; Wang, J.-W.; Li, Y.; Xu, Z.-Y.; Wang, X.-X.; Lu, X.; Fu, Y. J. Am. Chem. Soc. 2020, 142, 214.  doi: 10.1021/jacs.9b09415

    43. [43]

      Yang, Z.-P.; Fu, G. C. J. Am. Chem. Soc. 2020, 142, 5870.  doi: 10.1021/jacs.0c01324

    44. [44]

      Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. J. Am. Chem. Soc. 2019, 141, 7709.  doi: 10.1021/jacs.9b02844

    45. [45]

      Cheng, L.; Li, M.-M.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2018, 140, 11627.  doi: 10.1021/jacs.8b09346

    46. [46]

      Chen, T.; Yang, H.; Yang, Y.; Dong, G.; Xing, D. ACS Catal. 2020, 10, 4238.  doi: 10.1021/acscatal.0c00019

    47. [47]

      (a) Cheng, L.; Li, M.-M.; Wang, B.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2019, 10, 10417. (b) Lv, L.; Zhu, D.; Qiu, Z.; Li, J.; Li, C.-J. ACS Catal. 2019, 9, 9199.

    48. [48]

      Ji, D.-W.; He, G.-C.; Zhang, W.-S.; Zhao, C.-Y.; Hu, Y.-C.; Chen, Q.-A. Chem. Commun. 2020, 56, 7431.  doi: 10.1039/D0CC02697B

    49. [49]

      (a) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314. (b) Giri, R.; KC, S. J. Org. Chem. 2018, 83, 3013. (c) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287. (d) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371. (e) Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.

    50. [50]

      Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastage, M. D.; Baran, P. S. Science, 2016, 352, 801.  doi: 10.1126/science.aaf6123

    51. [51]

      KC, S.; Dhungana, R. K.; Shrestha, B.; Thapa, S.; Khanal, N.; Basnet, P.; Lebrun, R. W.; Giri, R. J. Am. Chem. Soc. 2018, 140, 9801.  doi: 10.1021/jacs.8b05374

    52. [52]

      Chierchia, M.; Xu, P.; Lovinger, G. J.; Morken, J. P. Angew. Chem. Int. Ed. 2019, 58, 14245.  doi: 10.1002/anie.201908029

    53. [53]

      García-Domínguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017, 139, 6835.  doi: 10.1021/jacs.7b03195

    54. [54]

      Shu, W.; García-Domínguez, A.; Quirós, M. T.; Mondal, R.; Cárdenas, D. J.; Nevado, C. J. Am. Chem. Soc. 2019, 141, 13812.  doi: 10.1021/jacs.9b02973

    55. [55]

      (a) Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. Org. Lett. 2019, 21, 4771. (b) García-Domínguez, A.; Mondal, R.; Nevado, C. Angew. Chem. Int. Ed. 2019, 58, 12286. (c) Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069.

    56. [56]

      Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 10657.  doi: 10.1021/jacs.7b06567

    57. [57]

      Derosa, J.; van der Puyl, V. A.; Tran, V. T.; Liu, M.; Engle, K. M. Chem. Sci. 2018, 9, 5278.  doi: 10.1039/C8SC01735B

    58. [58]

      (a) Nattmann, L.; Saeb, R.; N thling, N.; Cornella, J. Nat. Catal. 2020, 3, 6. (b) Tran, V. T.; Li, Z.-Q.; Apolinar, O.; Derosa, J.; Joannou, . W. V.; Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. Angew. Chem. Int. Ed. 2020, 59, 7409.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    7. [7]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(107)
  • Abstract views(2470)
  • HTML views(711)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return