Citation: Liu Jiuding, Zhang Yudong, Liu Junxiang, Li Jinhan, Qiu Xiaoguang, Cheng Fangyi. In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries[J]. Acta Chimica Sinica, ;2020, 78(12): 1426-1433. doi: 10.6023/A20070330 shu

In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries

  • Corresponding author: Cheng Fangyi, fycheng@nankai.edu.cn
  • Received Date: 28 July 2020
    Available Online: 9 October 2020

    Fund Project: the National Natural ScienceFoundation of China 21925503the Mistry of Science and Technology of the People's Republic of China 206YFA0202503Project supported by the Mistry of Science and Technology of the People's Republic of China (No.206YFA0202503) and the National Natural ScienceFoundation of China (Nos. 21925503, 21835004)the National Natural ScienceFoundation of China 21835004

Figures(7)

  • Lithium-rich manganese-based oxides (LRMO) are promising cathode materials to build next generation lithium-ion batteries because of high capacity and low cost. However, the severe capacity fade and voltage decay, which originate from surface oxygen loss, side reactions and irreversible phase transformation, restrict their practical application. Proposed approaches to address these issues include electrolyte modification, synthesis condition optimization, tuning elemental composition, bulk doping and surface coating. Surface coating has been proved to be an effective method to stabilize the interface between LRMO and electrolyte. Herein, we report a facile approach to synthesize Li3PO4-coated LRMO (LRMO@LPO) by in-situ carbonate-phosphate precipitate conversion reaction. The formation of Li3PO4 layer and its contribution to enhanced electrochemical performance are investigated in detail. Transmission electron microscopy (TEM) reveals that the surface of carbonate precursor converts to Ni3(PO4)2 after reacting with Na2HPO4 solution, which finally transforms to Li3PO4 coating layer with thickness below 30 nm during calcination process. Quinoline phosphomolybdate gravimetric method gives the optimal Li3PO4 coating content of 0.56%. The modified LRMO@LPO sample exhibits improved cycling stability (191.1 mAh·g-1 after 175 cycles at 0.5C between 2.0~4.8 V and 81.8% capacity retention) and suppressed voltage decay (1.09 mV per cycle), compared with bare LRMO material (72.9% capacity retention, 1.78 mV per cycle). The electrodes are studied by galvanostatic intermittent titration technique, electrochemical impedance spectroscopy, TEM and inductively coupled plasma atomic emission spectrometry. The results suggest efficient mitigation of phase transformation and dissolution of transition metal in LRMO@LPO. As a coating material with lithium-ion conductivity, Li3PO4 not only acts as a physical barrier to inhibit side reaction between the electrolyte and LRMO, but also promotes lithium ion transport at the surface region of cathode. The in-situ surface modification approach simplifies the traditional post coating process, and may provide new insight to build stable and low cost Li-rich cathode for lithium-ion batteries.
  • 加载中
    1. [1]

      Shen, Y.; Chen, L. Sci. Bull. 2020, 65, 117(in Chinese).

    2. [2]

      Chen, J. Acta Chim. Sinica 2017, 75, 127(in Chinese).

    3. [3]

      Lu, Y.; Zhang, Q.; Chen, J. Sci. China Chem. 2019, 62, 533.

    4. [4]

      Kim, J.-S.; Johnson, C. S.; Thackeray, M. M. Electrochem. Commun. 2002, 4, 205.

    5. [5]

      Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17, 3112.

    6. [6]

      Zhao, E.; Yu, X.; Wang, F.; Li, H. Sci. China Chem. 2017, 60, 1483.

    7. [7]

      Zhao, E.; Zhang, M.; Wang, X.; Hu, E.; Liu, J.; Yu, X.; Olguin, M.; Wynn, T. A.; Meng, Y. S.; Page, K.; Wang, F.; Li, H.; Yang, X.-Q.; Huang, X.; Chen, L. Energy Storage Materials 2020, 24, 384.

    8. [8]

      Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Adv. Mater. 2018, 30, 1705197.

    9. [9]

      House, R. A.; Maitra, U.; Perez-Osorio, M. A.; Lozano, J. G.; Jin, L.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J.; Roberts, M. R.; Bruce, P. G. Nature 2020, 577, 502.

    10. [10]

      Li, Q.; Yao, Z.; Lee, E.; Xu, Y.; Thackeray, M. M.; Wolverton, C.; Dravid, V. P.; Wu, J. Nat. Commun. 2019, 10, 1692.

    11. [11]

      Lee, S.; Jin, W.; Kim, S. H.; Joo, S. H.; Nam, G.; Oh, P.; Kim, Y. K.; Kwak, S. K.; Cho, J. Angew. Chem. Int. Ed. 2019, 58, 10478.

    12. [12]

      Deng, B.; Sun, D.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M.; Peng, G. Acta Chim. Sinica 2018, 76, 259(in Chinese).

    13. [13]

      Xiao, Z.; Liu, J.; Fan, G.; Yu, M.; Liu, J.; Gou, X.; Yuan, M.; Cheng, F. Mater. Chem. Front. 2020, 4, 1689.

    14. [14]

      Shi, J.-L.; Xiao, D.-D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X.-D.; Yin, Y.-X.; Yang, X.-Q.; Guo, Y.-G.; Gu, L.; Wan, L.-J. Adv. Mater. 2018, 30, 1705575.

    15. [15]

      Yang, C.; Gong, Z.; Zhao, W.; Yang, Y. Acta Chim. Sinica 2017, 75, 212(in Chinese).

    16. [16]

      Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A. M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. Chem. Mater. 2017, 29, 9923.

    17. [17]

      Zheng, Z.; Yang, X.-S.; Hua, W.-B.; Tang, Y. Chin. J. Inorg. Chem. 2017, 33, 963(in Chinese).

    18. [18]

      Liu, J.; Wang, J.; Ni, Y.; Zhang, Y.; Luo, J.; Cheng, F.; Chen, J. Small Methods 2019, 3, 1900350.

    19. [19]

      Zhang, J.; Cheng, F.; Chou, S.; Wang, J.; Gu, L.; Wang, H.; Yoshikawa, H.; Lu, Y.; Chen, J. Adv. Mater. 2019, 31, 1901808.

    20. [20]

      Yu, R.; Wang, X.; Fu, Y.; Wang, L.; Cai, S.; Liu, M.; Lu, B.; Wang, G.; Wang, D.; Ren, Q.; Yang, X. J. Mater. Chem. A 2016, 4, 4941.

    21. [21]

      Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Adv. Energy Mater. 2016, 6, 1502398.

    22. [22]

      Wang, Y.; Yang, Z.; Qian, Y.; Gu, L.; Zhou, H. Adv. Mater. 2015, 27, 3915.

    23. [23]

      Wang, Y.; Gu, H.-T.; Song, J.-H.; Feng, Z.-H.; Zhou, X.-B.; Zhou, Y.-N.; Wang, K.; Xie, J.-Y. J. Phys. Chem. C 2018, 122, 27836.

    24. [24]

      Yang, J.; Li, P.; Zhong, F.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Xia, D.; Cao, Y. Adv. Energy Mater. 2020, 10, 1904264.

    25. [25]

      Zhang, W.; Sun, Y.; Deng, H.; Ma, J.; Zeng, Y.; Zhu, Z.; Lv, Z.; Xia, H.; Ge, X.; Cao, S.; Xiao, Y.; Xi, S.; Du, Y.; Cao, A.; Chen, X. Adv. Mater. 2020, 32, 2000496.

    26. [26]

      Huang, J.-C.; Mei, L.; Ma, Z.; Zhu, X.-Y.; Quan, J.-B.; Li, D.-C. Chin. J. Inorg. Chem. 2017, 33, 1236(in Chinese).

    27. [27]

      Kang, Y.; Liang, Z.; Zhao, Y.; Xu, H.; Qian, K.; He, X.; Li, T.; Li, J. Sci. China Mater. 2020, 63, 1683.

    28. [28]

      Xiao, Z.; Meng, J.; Li, Q.; Wang, X.; Huang, M.; Liu, Z.; Han, C.; Mai, L. Sci. Bull. 2018, 63, 46.

    29. [29]

      Li, Z.; Wang, Z.; Ban, L.; Wang, J.; Lu, S. Acta Chim. Sinica 2019, 77, 1115(in Chinese).

    30. [30]

      Yang, S.-Q.; Wang, P.-B.; Wei, H.-X.; Tang, L.-B.; Zhang, X.-H.; He, Z.-J.; Li, Y.-J.; Tong, H.; Zheng, J.-C. Nano Energy 2019, 63, 103889.

    31. [31]

      Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Adv. Energy Mater. 2015, 5, 1500274.

    32. [32]

      Haynes, W. M. CRC Handbook of Chemistry and Physics, 97th ed., Vol. 5, CRC Press Taylor & Francis Group, Boca Raton, Florida, 2016, pp. 177-178.

    33. [33]

      Xiao, Z. B.; Chen, S.; Guo, M. M. Trans. Nonferrous Met. Soc. China 2011, 21, 2454.

    34. [34]

      Zhang, Y.; Hou, P.; Zhou, E.; Shi, X.; Wang, X.; Song, D.; Guo, J.; Zhang, L. J. Power Sources 2015, 292, 58.

    35. [35]

      Radin, M. D.; Hy, S.; Sina, M.; Fang, C.; Liu, H.; Vinckeviciute, J.; Zhang, M.; Whittingham, M. S.; Meng, Y. S.; Van der Ven, A. Adv. Energy Mater. 2017, 7, 1602888.

    36. [36]

      Toby, B. H.; Von Dreele, R. B. J. Appl. Crystallogr. 2013, 46, 544.

    37. [37]

      Shen, C.-H.; Wang, Q.; Fu, F.; Huang, L.; Lin, Z.; Shen, S.-Y.; Su, H.; Zheng, X.-M.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. ACS Appl. Mater. Interfaces 2014, 6, 5516.

    38. [38]

      Cui, H.; Li, H.; Liu, J.; Zhang, Y.; Cheng, F.; Chen, J. Inorg. Chem. Front. 2019, 6, 1694.

    39. [39]

      Popovi, L.; Manoun, B.; de Waal, D.; Nieuwoudt, M. K.; Comins, J. D. J. Raman Spectrosc. 2003, 34, 77.

    40. [40]

      Qiao, Q. Q.; Zhang, H. Z.; Li, G. R.; Ye, S. H.; Wang, C. W.; Gao, X. P. J. Mater. Chem. A 2013, 1, 5262.

    41. [41]

      Kumar, P. R.; Venkateswarlu, M.; Misra, M.; Mohanty, A. K.; Satyanarayana, N. J. Electrochem. Soc. 2011, 158, A227.

    42. [42]

      Hu, S.; Li, Y.; Chen, Y.; Peng, J.; Zhou, T.; Pang, W. K.; Didier, C.; Peterson, V. K.; Wang, H.; Li, Q.; Guo, Z. Adv. Energy Mater. 2019, 9, 1901795.

    43. [43]

      Zheng, J.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P.; Chen, X.; Wang, C.; Zhang, J.-G. Chem. Mater. 2014, 26, 6320.

    44. [44]

      Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Adv. Mater. 2018, 30, 1801751.

    45. [45]

      Yan, P.; Zheng, J.; Tang, Z. K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. Nat. Nanotechnol. 2019, 14, 602.

    46. [46]

      Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater. 2011, 23, 1695.

    47. [47]

      Gent, W. E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S. J.; Stone, K. H.; McIntire, M.; Hong, J.; Song, J. H.; Li, Y.; Mehta, A.; Ermon, S.; Tyliszczak, T.; Kilcoyne, D.; Vine, D.; Park, J. H.; Doo, S. K.; Toney, M. F.; Yang, W.; Prendergast, D.; Chueh, W. C. Nat. Commun. 2017, 8, 2091.

    48. [48]

      Sharifi-Asl, S.; Yurkiv, V.; Gutierrez, A.; Cheng, M.; Balasubramanian, M.; Mashayek, F.; Croy, J.; Shahbazian-Yassar, R. Nano Lett. 2020, 20, 1208.

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

Metrics
  • PDF Downloads(163)
  • Abstract views(5434)
  • HTML views(1210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return