Citation: Liu Hongwen, Zhu Longmin, Lou Xiaofeng, Yuan Lin, Zhang Xiao-Bing. A Two-Photon Fluorescent Probe for Specific Imaging of Furin Activity in Living Cells and Tissues[J]. Acta Chimica Sinica, ;2020, 78(11): 1240-1245. doi: 10.6023/A20070323 shu

A Two-Photon Fluorescent Probe for Specific Imaging of Furin Activity in Living Cells and Tissues

  • Corresponding author: Zhang Xiao-Bing, xbzhang@hnu.edu.cn
  • Received Date: 22 July 2020
    Available Online: 27 July 2020

    Fund Project: the National Natural Science Foundation of China 21890744National Key R & D Program of China 2019YFA0210103the National Postdoctoral Program for Innovative Talents BX20180093Project supported by the National Natural Science Foundation of China (Nos. 21890744 and 21877029), National Key R & D Program of China (No.2019YFA0210103), and the National Postdoctoral Program for Innovative Talents (No. BX20180093)the National Natural Science Foundation of China 21877029

Figures(5)

  • Furin, the most characteristic member of the proprotein convertase (PCs), has important biological functions. The expression level of furin is related to many diseases, for example, the occurrence and development of cancer is closely related to the expression level of furin. Although several small-molecule fluorescent probes for furin have been developed, which were designed based on near-infrared dye or one-photon dye. These probes exhibit low Stocks' shift or shallow penetration depth, which leading to self-quenching and strong interference. Two-photon fluorescent probes, which utilize two near-infrared photons as the excitation source, can overcome these problems. Herein, a furin-activatable two-photon fluorescent probe (Nap-F) was developed firstly that allowed for detection and imaging of furin in live cells and tumor tissues. Nap-F consists of a classical two-photon fluorophore (1, 8-naphthalimide), a furin-particular polypeptide sequence RVRR and a self-eliminating linker. Nap-F is water-soluble and in a fluorescence-off state itself due to the inhibited intramolecular charge transfer (ICT). In the absence of furin, no noticeable fluorescence enhancement was detected, even over 3 days in buffer solution, indicating its good stability. Upon the conversion by furin, it displayed a dramatically fluorescence enhancement at 545 nm, and exhibits high specificity and sensitivity to furin. Nap-F was applied for visualizing the difference in the expression level of furin in various cells, demonstrating its capacity of distinguishing some cancer cells from normal cells. Furthermore, Nap-F was utilized to visualize the variation of furin expression level efficiently after immobilization of hypoxia-inducible factor-1 (HIF-1) by CoCl2, with the results indicating that there is a positive correlation between the expression level of furin and the degree of hypoxia in tumor cells. Owing to the excellent property of Nap-F, the probe was also successful utilized to imaging furin activity in tumor tissues. Thus, Nap-F is able to serve as a potential tool for better exploring the intrinsic link between hypoxic physiological environment and cellular carcinogenesis and detecting cancer in preclinical applications.
  • 加载中
    1. [1]

      Steiner, D. F. Curr. Opin. Chem. Biol. 1998, 2, 31.  doi: 10.1016/S1367-5931(98)80033-1

    2. [2]

      Seidah, N. G.; Mayer, G.; Zaid, A.; Rousselet, E.; Nassoury, N.; Poirier, S.; Essalmani, R.; Prat, A. Int. J. Biochem. Cell Biol. 2008, 40, 1111.  doi: 10.1016/j.biocel.2008.01.030

    3. [3]

      Bassi, D. E.; Fu, J.; de Cicco, R. L.; Klein-Szanto, A. J. P. Mol. Carcinogen 2005, 44, 151.  doi: 10.1002/mc.20134

    4. [4]

      McMahon, S.; Grondin, F.; McDonal, P. P.; Richard, D. E.; Dubois, C. M. J. Biol. Chem. 2005, 280, 6561.  doi: 10.1074/jbc.M413248200

    5. [5]

      Zhang, J.; Liu, H.-W.; Hu, X.-X.; Li, J.; Liang, L.-H.; Zhang, X.-B.; Tan, W. Anal. Chem. 2015, 87, 11832.  doi: 10.1021/acs.analchem.5b03336

    6. [6]

      Li, X.; Gao, X.; Shi, W.; Ma, H. Chem. Rev. 2014, 114, 590.  doi: 10.1021/cr300508p

    7. [7]

      Yang, L.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica, 2017, 75, 1047. (in Chinese).
       

    8. [8]

      Yang, Z.; He, Y.; Dai, B.; Dou, B.; Wang, J.; Peng, X. Acta Chim. Sinica, 2011, 69, 445(in Chinese).
       

    9. [9]

      Guan, X.; Wang, L.; Li, Z.; Liu, M.; Wang, K.; Lin, B.; Yang, X.; Lai, S.; Lei, Z.. Acta Chim. Sinica, 2019, 77, 1036(in Chinese).
       

    10. [10]

      Hou, J.; Li, K.; Qin, C. Yu, X.; Chin. J. Org. Chem. 2018, 38, 612(in Chinese).

    11. [11]

      Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W. Chem. Soc. Rev. 2018, 47, 7140.  doi: 10.1039/C7CS00862G

    12. [12]

      Zhu, L.; Liu, H.-W.; Yang, Y.; Hu, X.-X.; Li, K.; Xu, S.; Li, J.-B.; Ke, G.; Zhang, X.-B. Anal. Chem. 2019, 91, 9682.  doi: 10.1021/acs.analchem.9b01220

    13. [13]

      Li, K.; Hu, X.-X.; Liu, H.-W.; Xu, S.; Huan, S.-Y.; Li, J.-B.; Deng, T.-G.; Zhang, X.-B. Anal. Chem. 2018, 90, 11680.  doi: 10.1021/acs.analchem.8b03335

    14. [14]

      Zhao, X.; Lv, G.; Peng, Y.; Liu, Q.; Li, X.; Wang, S.; Li, K.; Qiu, L.; Lin, J. ChemBioChem 2018, 19, 1060.  doi: 10.1002/cbic.201800015

    15. [15]

      Mu, J.; Liu, F.; Rajab, M. S.; Shi, M.; Li, S.; Goh, C.; Lu, L.; Xu, Q.-H.; Liu, B.; Ng, L. G., Xing B. Angew. Chem. Int. Ed. 2014, 53, 14357.  doi: 10.1002/anie.201407182

    16. [16]

      Liu, X.; Liang, G. Chem. Commun. 2017, 53, 1037.  doi: 10.1039/C6CC09106G

    17. [17]

      Liu, H.-W.; Liu, Y.; Wang, P.; Zhang, X.-B. Methods Appl. Fluoresc. 2017, 5, 012003.  doi: 10.1088/2050-6120/aa61b0

    18. [18]

      Kim, H.; Cho, B. Chem. Rev. 2015, 115, 5014.  doi: 10.1021/cr5004425

    19. [19]

      Kim, H.; Cho, B. Acc. Chem. Res. 2009, 42, 863.  doi: 10.1021/ar800185u

    20. [20]

      Liu, H.-W.; Zhang, X.-B.; Zhang, J.; Wang, Q.-Q.; Hu, X.-X.; Wang, P.; Tan, W. Anal. Chem. 2015, 87, 8896.  doi: 10.1021/acs.analchem.5b02021

    21. [21]

      Huang, C.; Chen, H.; Li, F. An, S. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese).

    22. [22]

      Dragulescu-Andrasi, A.; Kothapalli, S.-R.; Tikhomirov, G. A.; Rao, J.; Gambhir, S. S. J. Am. Chem. Soc. 2013, 135, 11015.  doi: 10.1021/ja4010078

    23. [23]

      Yuan, Y.; Zhang, J.; Cao, Q.; An, L.; Liang, G. Anal. Chem. 2015, 87, 6180.  doi: 10.1021/acs.analchem.5b01656

    24. [24]

      Xu, S.; Liu, H.-W.; Hu, X.-X.; Huan, S.-Y.; Zhang, J.; Liu, Y.-C.; Yuan, L.; Qu, F.-L.; Zhang, X.-B.; Tan, W. Anal. Chem. 2017, 89, 7641.  doi: 10.1021/acs.analchem.7b01561

    25. [25]

      Thorn-Seshold, O.; Vargas-Sanchez, M.; McKeon, S.; Hasserodt, J. Chem. Commun. 2012, 48, 6253.  doi: 10.1039/c2cc32227g

    26. [26]

      Ou-Yang, J.; Li, Y.-F.; Wu, P.; Jiang, W.-L.; Liu, H.-W.; Li, C.-Y. ACS Sens. 2018, 3, 1354.  doi: 10.1021/acssensors.8b00274

    27. [27]

      Ma, J.; Evrard, S.; Badiola, I.; Siegfried, G.; Khatib, A. M. Eur. J. Cell Biol., 2017, 96, 457.  doi: 10.1016/j.ejcb.2017.06.001

    28. [28]

      Feng, L.; Li, P.; Hou, J.; Cui, Y.-L.; Tian, X.-G.; Yu, Z.-L.; Cui, J.-N.; Wang, C.; Huo, X.-K.; Ning, J., Ma X.-C. Anal. Chem. 2018, 90, 13341.  doi: 10.1021/acs.analchem.8b02857

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(9)
  • Abstract views(663)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return