Citation: Ren Xuqiang, Li Donglin, Zhao Zhenzhen, Chen Guangqi, Zhao Kun, Kong Xiangze, Li Tongxin. Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials[J]. Acta Chimica Sinica, ;2020, 78(11): 1268-1274. doi: 10.6023/A20070319 shu

Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials

  • Corresponding author: Li Donglin, dlli@chd.edu.cn
  • Received Date: 16 July 2020
    Available Online: 9 October 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21473014, 21073021)the National Natural Science Foundation of China 21073021the National Natural Science Foundation of China 21473014

Figures(8)

  • The layered lithium-rich manganese-based cathode material has been widely concerned because of it's advantages such as a specific discharge capacity greater than 250 mAh·g-1 and a high discharge platform, and is expected to become the next-generation lithium ion battery cathode material. However, lithium-rich manganese-based cathode materials have poor cycle stability, low coulombic efficiency for the first charge and discharge, and low rate performance. The most important thing is that the problem of faster voltage decays on the discharge platform has not been effectively solved, The current it is mainly to improve the performance by element doping modification and surface coating, so it is very important to find suitable doping elements and coating materials. The common coating material is mainly to prevent direct contact between the electrolyte and the positive electrode material to improve the cycle stability, and it is difficult to slow down the attenuation of the discharge voltage platform. Al-doping lithium-rich manganese-based Li1.2Mn0.54-xAlxNi0.13Co0.13O2 (x=0, 0.03) cathode material was prepared by sol-gel method and Li2WO4 surface coating by one-step liquid phase method. The required materials were confirmed by X-ray diffractometer (XRD), energy disperse spectroscopy (EDS) and scanning electron microscope (SEM) tests, and then the effects of Al-doping and Li2WO4 coated double-effect modification on the electrochemical performance of lithium-rich manganese-based cathode materials were studied by electrochemical test system. The results show that Al doping significantly improves the cycling stability of lithium-rich manganese-based cathode materials, and the coating Li2WO4 significantly improves its rate performance and discharge platform voltage attenuation. In 5% Li2WO4 coated Li1.2Mn0.51Al0.03Ni0.13Co0.13O2 cathode material in charge and discharge voltage 2.0~4.8 V, and under the current density 1000 mA·g-1, the specific capacity is still as high as about 110 mAh·g-1. At the same time, the specific capacity retention rate was 78% after 300 cycles at the current density of 100 mA·g-1, and the voltage decay of the discharge platform significantly slowed down during the cycle.
  • 加载中
    1. [1]

      Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359.  doi: 10.1038/35104644

    2. [2]

      Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652.  doi: 10.1038/451652a

    3. [3]

      Park, K.-S.; Cho, M.-H.; Jin, S.-J.; Nahm, K.-S.; Hong, Y.-S. Solid State Ionics 2004, 171, 141.  doi: 10.1016/j.ssi.2004.04.016

    4. [4]

      Kang, K.; Meng, Y.-S.; Breger, J.; Grey, C.-P.; Ceder, G. Science 2006, 311, 977.  doi: 10.1126/science.1122152

    5. [5]

      Fergus, J.-W. J. Power Sources 2010, 195, 939.  doi: 10.1016/j.jpowsour.2009.08.089

    6. [6]

      Mohanty, D.; Kalnaus, S.; Meisner, R.-A.; Rhodes, K.-J.; Li, J.-L.; Payzant, E.-A.; Wood III, D.-L.; Daniel, C. J. Power Sources 2013, 229, 239.  doi: 10.1016/j.jpowsour.2012.11.144

    7. [7]

      Gallagher, K.-G.; Croy, J.-R.; Balasubramanian, M.; Bettge, M.; Abraham, D.-P.; Burrell, A.-K.; Thackeray, M.-M. Electrochem. Commun. 2013, 33, 96.  doi: 10.1016/j.elecom.2013.04.022

    8. [8]

      Croy, J.-R.; Gallagher, G.-K.; Balasubramanian, M.; Chen, Z.-H.; Ren, Y.; Kim, D.-H.; Kang, S.-H.; Dees, D.-W.; Thackeray, M.-M. J. Phys. Chem. C 2013, 117, 6525.

    9. [9]

      Liu, S.; Liu, Z.-P.; Shen, X.; Wang, X.-L.; Liao, S.-C.; Yu, R.-C.; Wang, Z.-X.; Hu, Z.-W.; Chen, C.-T.; Yu, X.-Q.; Yang, X.-Q.; Chen, L.-Q. Adv. Eng. Mater. 2019, 9, 1901530.  doi: 10.1002/aenm.201901530

    10. [10]

      Zhang, J.-N.; Li, Q.-H.; Ouyang, C.-Y.; Yu, X.-Q.; Ge, M.-Y.; Huang, X.-J.; Hu, E.-Y.; Ma, C.; Li, S.-F.; Xiao, R.-J.; Yang, W.-L.; Chu, Y.; Liu, Y.-J.; Yu, H.-G.; Yang, X.-Q.; Huang, X.-J.; Chen, L.-Q.; Li, H. Natural Energy 2019, 4, 594.  doi: 10.1038/s41560-019-0409-z

    11. [11]

      He, W.; Yuan, D.-D.; Qian, J.-F.; Ai, X.-P.; Yang, H.-X.; Cao, Y.-L. J. Mater. Chem. A 2013, 1, 11397.  doi: 10.1039/c3ta12296d

    12. [12]

      Li, Q.; Li, G.-S.; Fu, C.-C.; Luo, D.; Fan, J.-M.; Li, L.-P. ACS Appl. Mater. Interfaces 2014, 6, 10330.  doi: 10.1021/am5017649

    13. [13]

      Xiang, Y.-H.; Li, J.; Wu, X.-W.; Liu, Z.-X.; Xiong, L.-Z.; He, Z.-Q.; Yin, Z.-L. Ceram. Int. 2016, 42, 8833.  doi: 10.1016/j.ceramint.2016.02.128

    14. [14]

      Knight, J.-C.; Nandakumar, P.; Kan, W.-H.; Manthiram, A. J. Mater. Chem. A 2015, 3, 2006.  doi: 10.1039/C4TA05178E

    15. [15]

      Deng, Z.-Q.; Manthiram, A. J. Phys. Chem. C 2011, 115, 7097.

    16. [16]

      Du, J.-Y.; Shan, Z.-Q.; Zhu, K.-L.; Liu, X.-Y.; Tian, J.-H.; Du, H.-Y. J. Solid State Electrochem. 2014, 19, 1037.

    17. [17]

      Yu, S.-H.; Yoon, T.; Mun, J.-Y.; Park, S.-J.; Kang, Y.-S.; Park, J.-H.; Oh, S.-M.; Sung, Y.-E. J. Mater. Chem. A 2013, 1, 2833.  doi: 10.1039/c2ta00309k

    18. [18]

      Li, L.; Song, B.-H.; Chang, Y.-L.; Xia, H.; Yang, J.-R.; Lee, K.-S.; Lu, L. J. Power Sources 2015, 283, 162.  doi: 10.1016/j.jpowsour.2015.02.085

    19. [19]

      An, J.; Shi, L.-Y.; Chen, G.-R.; Li, M.; Liu, H.-J.; Yuan, S.; Chen, S.-M.; Zhang, D.-S. J. Mater. Chem. A 2017, 5, 19728.

    20. [20]

      Li, Z.; Wang, Z.; Ban, L.-Q.; Wang, J.-T.; Lu, S.-G. Acta Chim. Sinica 2019, 77, 1115.
       

    21. [21]

      Lim, S.-N.; Seo, J.-Y.; Jung, D.-S.; Park, S.-B.; Yeonc, S.-H. J. Electroanal. Chem. 2015, 740, 88.  doi: 10.1016/j.jelechem.2015.01.010

    22. [22]

      Hua, S.-L.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanama, R. J. Power Sources 2009, 188, 554.

    23. [23]

      Zheng, J.-M.; Li, J.; Zhang, Z.-R.; Guo, X.-J.; Yang, Y. Solid State Ionics 2008, 179, 1794.  doi: 10.1016/j.ssi.2008.01.091

    24. [24]

      Zhang, X.-F.; Belharouak, I.; Li, L.; Lei, Y.; Elam, J.-W.; Nie, A.; Chen, X.-Q.; Yassar, R.-S.; Axelbaum, R.-L. Adv. Eng. Mater. 2013, 3, 1299.  doi: 10.1002/aenm.201300269

    25. [25]

      Wu, Q.; Yin, Y.-F.; Sun, S.-W.; Zhang, X.-P.; Wan, N.; Bai, Y. Electrochim. Acta 2015, 158, 73.

    26. [26]

      Wu, Y.; Muruga, V.-A.; Manthiram, A. J. Electrochem. Soc. 2008, 155, A635.  doi: 10.1149/1.2948350

    27. [27]

      Li, C.-D.; Yao, Z.-L.; Xu, J.; Tang, P.; Xiong, X. Ionics 2016, 23, 549.

    28. [28]

      Ma, D.-T.; Zhang, P.-X.; Li, Y.-L.; Ren, X.-Z. Scientific Reports 2015, 5, 11257.  doi: 10.1038/srep11257

    29. [29]

      Xiang, Y-H.; Yin, Z.-L.; Zhang, Y.-H.; Li, X.-H. Electrochim. Acta 2013, 19, 214.

    30. [30]

      Chen, Y.; Xu, G.-F.; Li, J.-L.; Zhang, Y.-K.; Chen, Z.; Kang, F.-Y. Electrochim. Acta 2013, 87, 686.  doi: 10.1016/j.electacta.2012.09.024

    31. [31]

      Song, C.-K.; Feng, W.-J.; Su, W.-X.; Chen, L.-J.; Li, M.-M. Integrated Ferroelectrics 2019, 200, 117.  doi: 10.1080/10584587.2019.1592628

    32. [32]

      Huang, X.-K.; Zhang, Q.-S.; Chang, H.-T.; Gan, J.-L.; Yue, H.-J.; Yang, Y. J. Electrochem. Soc. 2009, 156, A162.  doi: 10.1149/1.3054397

    33. [33]

      Li, Z.; Chernova, N.-A.; Feng, J.-J.; Upreti, S.; Omenya, F.; Whittingham, M.-S. J. Electrochem. Soc. 2012, 159, A116.  doi: 10.1149/2.064205jes

    34. [34]

      Yan, W. C.; Xie, Y.; Jiang, J.-C.; Sun, D.-Y.; Ma, X.-D.; Lan, Z.-G.; Jin, Y.-C. ACS Sustainable Chem. Eng. 2018, 6, 4625.  doi: 10.1021/acssuschemeng.7b03634

    35. [35]

      Yahaya, A.-H.; Ibrahim, Z.-A.; Arof, A.-K. J. Alloys Compd. 1996, 241, 147.

    36. [36]

      Nassau, K. J. Electrochem. Soc. 1980, 127, 2743.  doi: 10.1149/1.2129583

    37. [37]

      Hayashi, T.; Okada, J.; Toda, E.; Kuzuo, R.; Matsuda, Y.; Kuwata, N.; Kawamura, J. J. Power Sources 2015, 127, 2743.

    38. [38]

      Hayashi, T.; Matsuda, Y.; Kuwata, N.; Kawamura, J. J. Power Sources 2017, 354, 41.  doi: 10.1016/j.jpowsour.2017.04.036

    39. [39]

      Hayashi, T.; Miyazaki, T.; Matsuda, Y.; Kuwata, N.; Saruwatari, M.; Furuichi, Y.; Kurihara, K.; Kuzuo, R.; Kawamura J. J. Power Sources 2016, 305, 46.  doi: 10.1016/j.jpowsour.2015.11.075

    40. [40]

      Li, X.-N.; Cao, Z.-X.; Dong, H.-Y.; Shi, Z.-P.; Zhang, H.-S.; Li, J.-Y.; Yang, S.-J.; Yang, S.-T. RSC Adv. 2020, 10, 3166.  doi: 10.1039/C9RA09206D

    41. [41]

      Yue, P.; Wang, Z.-X.; Guo, H.-J.; Xiong, X.-H.; Li, X.-H. Electrochim. Acta 2013, 92, 1.  doi: 10.1016/j.electacta.2013.01.018

    42. [42]

      Nayak, P.-K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, W.-J.; Aurbach, D. Adv. Eng. Mater. 2016, 6, 1502398.  doi: 10.1002/aenm.201502398

    43. [43]

      Thackeray, M.-M.; Kang, S.-H.; Johnson, C.-S.; Vaughey, J.-T.; Benedeka, R.; Hackneyb, S.-A. J. Mater. Chem. 2007, 115, 305.

    44. [44]

      Zheng, Z.-H.; Li, Q. Introduction to Rietveld Refinement with X-Ray Power Diffraction Data GSAS Software, China Building Materials Press, Beijing, 2016.

    45. [45]

      Guilmard, M.; Rougier, A.; Grüne, M.; Croguennec, L.; Delmas, C. J. Power Sources 2003, 115, 305.  doi: 10.1016/S0378-7753(03)00012-0

    46. [46]

      Guo, H.-C.; Xia, Y.-G.; Zhao, H.; Yin, C.; Ji, K.; Zhao, F.; Liu, Z.-P. Ceramics International 2017, 43, 13845.  doi: 10.1016/j.ceramint.2017.07.107

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(13)
  • Abstract views(1330)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return