Citation: He Jinjun, Zhang Haozhe, Liu Xiaoqing, Lu Xihong. Enhancing Zn2+ Storage Capability of Cobalt Manganese Oxide by In-Situ Nanocarbon Coating[J]. Acta Chimica Sinica, ;2020, 78(10): 1069-1075. doi: 10.6023/A20070315 shu

Enhancing Zn2+ Storage Capability of Cobalt Manganese Oxide by In-Situ Nanocarbon Coating

  • Corresponding author: Liu Xiaoqing, liuxiaoq5@mail.sysu.edu.cn Lu Xihong, luxh6@mail.sysu.edu.cn
  • Received Date: 15 July 2020
    Available Online: 11 September 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21822509, U1810110, 21802173) and Science and Technology Planning Project of Guangdong Province (No. 2018A050506028)the National Natural Science Foundation of China 21802173the National Natural Science Foundation of China U1810110the National Natural Science Foundation of China 21822509Science and Technology Planning Project of Guangdong Province 2018A050506028

Figures(5)

  • The cobalt manganese oxide (CMO), with the advantages of high safety, non-toxicity, easy to obtain, multiple active sites, holds great potential in constructions of Zn-ion batteries (ZIBs). Yet, the dissolution of electrode materials into the electrolyte usually causes the structural collapse during repeated charge/discharge courses, which greatly limits the lifespan of ZIBs and thus restricts their further development. Herein, an in-situ coating method is developed to address this issue. Via a simple one-step hydrothermal method, a nanoscale carbon layer (denoted as nC) is introduced onto the surface of CMO (CMO@C) to prolong its cycling stability. Specifically, 30 mmol NH4F and 75 mmol CO(CH2)2 are first dissolved in 100 mL deionized water. Then, 11.25 mmol Mn(CH3COO)2 and 3.75 mmol Co(CH3COO)2 are added and stirred until the solid completely dissolves. Finally, 0.5 g glucose is dissolved in the solution and stirred for 5 min. The precursor solution is transferred into the 25 mL Teflon-lined stainless-steel autoclave and heated at 125℃ for 6 h in the oven. The as-obtained powder is washed three times by water and then dried at 60℃ overnight. The CMO@C sample is obtained after annealing the powder in air at 450℃ for 1 h. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectra (Raman) characterizations demonstrate that the introduction of the nC coating layer does not alter the composition and structure of CMO. Moreover, taking advantages of the superior conductivity of the carbon coverage, the CMO@C possesses a smaller charge transfer resistance and higher Zn ion diffusion capability compared with the CMO counterpart. The quicker charge transfer and faster ion exchange characteristics are both beneficial to the electrochemical performance optimization, both for the capacity enlargement and for the lifespan extension. As a proof of concept, at the current density of 0.5 A·g-1, the CMO@C shows a high specific capacity of 271.9 mAh·g-1 and no capacity loss is detected after 1000 cycle tests, which substantially outstrip those of the CMO (103.7 mAh·g-1 and 130 cycle lifespan). The work sheds light on the rational design of bimetal oxides as high-performance cathodes for ZIBs assembly.
  • 加载中
    1. [1]

      Tian, C.; Tian, J.; Chen, F.; Tong, L; Gao, S.; Xu, C.; Wang, Z. J. Chongqing University Tech. (Natural Science) 2018, 10, 34 (in Chinese).

    2. [2]

      Tang, G.; Mao, K.; Zhang, J.; Lyu, P.; Cheng, X.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2020, 78, 444 (in Chinese).
       

    3. [3]

      Wang, X.; Li, Y.; Du, L.; Gao, F.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2018, 76, 627 (in Chinese).
       

    4. [4]

      Wang, L.; Zhao, D.; Liu, X.; Yu, P.; Fu, H. Acta Chim. Sinica 2017, 75, 231 (in Chinese).
       

    5. [5]

      Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702869.  doi: 10.1002/aenm.201702869

    6. [6]

      Zhang, L.; Zhang, B.; Wang, C.; Dou, Y.; Zhang, Q.; Liu, Y.; Gao, H.; Al-Mamun, M.; Pang, W.; Guo, Z.; Dou, S.; Liu, H.; Nano Energy 2019, 60, 432.  doi: 10.1016/j.nanoen.2019.03.085

    7. [7]

      Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, 1903675.  doi: 10.1002/adma.201903675

    8. [8]

      He, J.; Liu, X.; Zhang, H.; Yang, Z.; Shi, X.; Liu, Q.; Lu, X. ChemSusChem 2020, 13, 1568.  doi: 10.1002/cssc.201902659

    9. [9]

      Tang, B.; Shan, L.; Liang, S.; Zhou, J. Energy Envir. Sci. 2019, 12, 3288.  doi: 10.1039/C9EE02526J

    10. [10]

      Alfaruqi, M.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J.; Choi, S.; Kim, J. Chem. Mater. 2015, 27, 3609.  doi: 10.1021/cm504717p

    11. [11]

      He, X.; Zhang, H.; Zhao, X.; Zhang, P.; Chen, M.; Zheng, Z.; Han, Z.; Zhu, T.; Tong, Y.; Lu, X. Adv. Sci. 2019, 6, 1900151  doi: 10.1002/advs.201900151

    12. [12]

      Sada, K.; Senthilkumar, B.; Barpanda, P. J. Mater. Chem. A 2019, 7, 23981.  doi: 10.1039/C9TA05836B

    13. [13]

      Bai, S.; Song, J.; Wen, Y.; Cheng, J.; Cao, G.; Yang, Y.; Li, D. RSC Adv. 2016, 6, 40793.  doi: 10.1039/C6RA01768A

    14. [14]

      Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079.  doi: 10.1039/C9TA08418E

    15. [15]

      Wu, C.; Gu, S.; Zhang, Q.; Bai, Y.; Li, M.; Yuan, Y.; Wang, H.; Liu, X.; Yuan, Y.; Zhu, N.; Wu, F.; Li, H.; Gu, L.; Lu, J. Nat. Commun. 2019, 10, 73.  doi: 10.1038/s41467-018-07980-7

    16. [16]

      Xiong, T.; Yu, Z.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y.; Pennycook, S.; Lee, W.; Xue, J. Adv. Energy Mater. 2019, 9, 1803815.  doi: 10.1002/aenm.201803815

    17. [17]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K.; Liu, J. Nat. Energy 2016, 1, 16039.  doi: 10.1038/nenergy.2016.39

    18. [18]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y.; Kim, J. ACS Energy Lett. 2018, 3, 1998.  doi: 10.1021/acsenergylett.8b01105

    19. [19]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894.  doi: 10.1021/jacs.6b05958

    20. [20]

      Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X. Energy Storage Mater. 2019, 21, 154.  doi: 10.1016/j.ensm.2018.12.019

    21. [21]

      Zhou, X.; Li, X.; Liao, B. J. Chongqing University Tech. (Natural Science) 2018, 7, 124 (in Chinese).

    22. [22]

      Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica 2017, 75, 218 (in Chinese).
       

    23. [23]

      Zhou, Y.; Chen, T.; Zhang, J.; Liu, Y.; Ren, P. Chin. J. Chem. 2017, 35, 1294.  doi: 10.1002/cjoc.201600915

    24. [24]

      Mo, X.; Liu, W.; Xie, J.; Luo, R.; Hu, S. J. Chongqing University Tech. (Natural Science) 2020, 5, 220 (in Chinese).

    25. [25]

      Zheng, Z.; Wu, Z.; Xiang, W.; Guo, X. Acta Chim. Sinica 2017, 75, 501 (in Chinese).
       

    26. [26]

      Zhu, H.; Gu, L.; Yu, D.; Sun, Y.; Wan, M.; Zhang, M.; Wang, L.; Wang, L.; Wu, W.; Yao, J.; Du, M.; Guo, S. Energy Envir. Sci. 2017, 10, 321.  doi: 10.1039/C6EE03054H

    27. [27]

      Lu, Y.; Wang, J.; Zeng, S.; Zhou, L.; Xu, W.; Zheng, D.; Liu, J.; Zeng, Y.; Lu, X. J. Mater. Chem. A 2019, 7, 21678.  doi: 10.1039/C9TA08625K

    28. [28]

      Sumi, V. S.; Elias, L.; Shibli, S. M. A. Int. J. Hydrogen Energy 2020, 45, 12360.  doi: 10.1016/j.ijhydene.2020.02.217

    29. [29]

      Zhao, Z.; Lin, J.; Wang, G.; Muhammad, T. AIChE J. 2015, 61, 239.  doi: 10.1002/aic.14641

    30. [30]

      Zeng, Y.; Lin, Z.; Wang, Z.; Wu, M.; Tong, Y.; Lu, X. Adv. Mater. 2018, 30, 1707290.  doi: 10.1002/adma.201707290

    31. [31]

      Wang, C.; Zeng, Y.; Xiao, X.; Wu, S.; Zhong, G.; Xu, K.; Wei, Z.; Su, W.; Lu, X. J. Energy Chem. 2020, 43, 182.  doi: 10.1016/j.jechem.2019.08.011

    32. [32]

      Zhang, H.; Liu, Q.; Fang, Y.; Teng, C.; Liu, X.; Fang, P.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, 1904948.  doi: 10.1002/adma.201904948

    33. [33]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894.  doi: 10.1021/jacs.6b05958

    34. [34]

      Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G. Energy Environ. Sci. 2019, 12, 2273.  doi: 10.1039/C9EE00956F

    35. [35]

      Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapiena, J.; Zhi, C. Energy Environ. Sci. 2018, 11, 2521.  doi: 10.1039/C8EE01415A

    36. [36]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 1.  doi: 10.1038/s41467-017-02088-w

    37. [37]

      Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 1.  doi: 10.1038/s41467-016-0009-6

    38. [38]

      Liu, J.; Wang, J.; Ku, Z.; Wang, H.; Chen, S.; Zhang, L.; Lin, J.; Shen, Z. ACS nano, 2016, 10, 1007.  doi: 10.1021/acsnano.5b06275

    39. [39]

      Liu, J.; Chen, M.; Zhang, L.; Jiang, J.; Yan, J.; Huang, Y.; Lin, J.; Fan, H.; Shen, Z. Nano Lett. 2014, 14, 7180.  doi: 10.1021/nl503852m

    40. [40]

      Dai, X.; Wan, F.; Zhang, L.; Cao, H.; Niu, Z. Energy Storage Mater. 2019, 17, 143.  doi: 10.1016/j.ensm.2018.07.022

    41. [41]

      Alfaruqi, M.; Gim, J.; Kim, S.; Song, J.; Pham, D.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. Electrochem. Commun. 2015, 60, 121.  doi: 10.1016/j.elecom.2015.08.019

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(2)
  • Abstract views(753)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return