Citation: Zhu Boyang, Wu Ruilong, Yu Xi. Artificial Intelligence for Contemporary Chemistry Research[J]. Acta Chimica Sinica, ;2020, 78(12): 1366-1382. doi: 10.6023/A20070306 shu

Artificial Intelligence for Contemporary Chemistry Research

  • Corresponding author: Zhu Boyang, luciszhu@outlook.com Yu Xi, xi.yu@tju.edu.cn
  • Received Date: 12 July 2020
    Available Online: 21 August 2020

    Fund Project: the National Natural Science Foundation of China 21773169National Key R & D Program 2017YFA0204503National Key R & D Program 2016YFB0401100the PEIYANG Young Scholars Program of Tianjin University 2018XRX-0007the College Student Innovation and Entrepreneurship Training Program of Tianjin University 201910056451Project supported by the National Natural Science Foundation of China (Nos. 21973069, 21773169, 21872103), National Key R & D Program (Nos. 2017YFA0204503, 2016YFB0401100), the PEIYANG Young Scholars Program of Tianjin University (No. 2018XRX-0007) and the College Student Innovation and Entrepreneurship Training Program of Tianjin University (No. 201910056451)the National Natural Science Foundation of China 21872103the National Natural Science Foundation of China 21973069

Figures(23)

  • Artificial intelligence (AI), especially the machine learning, is playing an increasingly important role in contemporary scientific research. Unlike the traditional computer program, machine learning can analyze a large number of data repeatedly and optimize its own model, a process which is called a "learning process". So that the AI can find the relationship underling the experiments from a large number of data, form a new model with better prediction and decisionmaking ability, and make an optimized strategy. The characteristics of chemical research just hit the strengths of machine learning. Chemical research often faces very complex material system and experimental process, so it is difficult to accurately analyze and making judgment through physical chemistry principles. Artificial intelligence can mine the correlation of massive experimental data generated in chemical experiments, help chemists make reasonable analysis and prediction, and therefore greatly accelerate the process of chemical research. This review presents the modern artificial intelligence method and its basic principles on solving chemical problems, by representative examples with specific machine learning algorithm. The application of artificial intelligence in chemical science is in a period of vigorous rise. Artificial intelligence has initially shown a powerful assist to chemical research. We hope this review can help more domestic chemical workers understand and use this powerful tool.
  • 加载中
    1. [1]

      Tang, Z. T.; Shao, K.; Zhao, D. B.; Zhu, Y. H. Control Theory & Applications 2017, 034, 1529 (in Chinese).
       

    2. [2]

      McKinney, S. M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G. C.; Darzi, A.; Etemadi, M.; Garcia-Vicente F.; Gilbert, F. J.; Halling-Brown, M.; Hassabis, D.; Jansen, S.; Karthikesalingam, A.; Kelly, C. J.; King, D.; Ledsam, J.R.; Melnick, D.; Mostofi, H.; Peng, L.; Reicher, J. J.; Romera-Paredes, B.; Sidebottom, R.; Suleyman, M.; Tse, D.; Young, K. C.; De, Fauw, J.; Shetty, S. Nature 2020, 577, 7788.

    3. [3]

    4. [4]

      Leon, F.; Lisa, C.; Curteanu, S. Mol. Cryst. Liq. Cryst. 2010, 518, 1542.

    5. [5]

      Wang, J.S.; Li, Z.; Yan, S.C.; Yue, X.; Ma, Y.Q.; Ma, L. RSC Adv. 2019, 9, 14797.

    6. [6]

      Sun, W.B.; Zheng, Y.J.; Yang, K.; Zhang, Q.; Shan, Akeel A.; Wu, Z.; Sun, Y.Y.; Feng, L.; Chen, D.Y.; Lu, S.R.; Li, Y.; Sun, K. Sci. Adv. 2019, 5, 4275.

    7. [7]

      Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Ding, C. T.; Luna, P.; Sedighian Rasouli, A.; Brodersen, P.; Sun, S.; Voznyy, O.; Tan, C. S.; Askerka, M.; Che, F. L.; Liu, M.; Seifitokaldani, A.; Pang, Y. J.; Lo, S. C.; Sargent, E. Nature 2020, 581, 178.

    8. [8]

      Wu, W.; Sun, Q. Scientia Sinica Physica, Mechanica & Astronomica 2018, 48, 54 (in Chinese). (吴炜, 孙强, 中国科学: 物理学 力学 天文学, 2018, 48, 54.)

    9. [9]

      Saunders, C.; Stitson, M. O.; Weston, J.; Holloway, R.; Bottou, L.; Scholkopf, B. Comput. Sci. 2002, 1, 1.

    10. [10]

      Safavian, S. R.; Landgrebe, D. IEEE Trans. Syst., Man, Cybern. 1991, 21, 660.

    11. [11]

    12. [12]

      Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P.I. IEEE Transactions on Computational Intelligence & Ai in Games, 2012, 4, 1.

    13. [13]

      Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatic —Second, Revised and Enlarged Edition, Volume I: Alphabetical Listing; Volume Ⅱ: Appendices, Bibliography, 2009.

    14. [14]

      Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, WILEY-VCH, Weinheim, Germany, 2000.

    15. [15]

      He, B.; Luo, Y.; Li, B. K.; Xue, Y.; Yu, L. T.; Qiu, X. L.; Yang, D. G. Acta Physico-Chimica Sinica 2015, 09, 1795 (in Chinese).

    16. [16]

      Wang, J. X.; Li, Y.; Yang, M.; Wang, Q. H.; Deng, G. W.; Yang, F.; Li, B. K. Chemical Research & Application 2019, 031, 1313 (in Chinese).

    17. [17]

      Wang, L.; Mao, H. T.; Zhang, L.; Liu, L. L.; Du, J. CIESC J. 2019, 70, 4722 (in Chinese).

    18. [18]

      Dai, Y.; Niu, L.; Zou, J.; Liu, D. Y.; Liu, H. J. Cent. South Univ. 2018, 25, 1535.

    19. [19]

      Ul-Haq, Z.; Ashraf, S.; Al Majid, A.; Barakat, A. Int. J. Mol. Sci. 2016, 17, 657.

    20. [20]

      Xu, Y. J.; Pei, J. F. Big Data Research 2017, 003, 45 (in Chinese).

    21. [21]

    22. [22]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 33.

    23. [23]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 34.

    24. [24]

      Ren, W.; Kong, D. X. Computers & Applied Chemistry, 2009, 11, 1455 (in Chinese). (任伟, 孔德信. 计算机与应用化学, 2009, 11, 1455.)

    25. [25]

      Dickert, F. L.; Hayden, O. Adv. Mater. 2000, 12, 311.

    26. [26]

      DRAGON http://www.talete.mi.it/

    27. [27]

      GRID http://www.moldiscovery.com/soft_grid.php

    28. [28]

      MOLE db http://michem.disat.unimib.it/mole_db/

    29. [29]

      Stein, H. S.; Gregoire, J.M. Chem. Sci. 2019, 10, 9640.

    30. [30]

      Mater, A. C.; Coote, M. L. J. Chem. Inf. Model. 2019, 59, 2545.

    31. [31]

      Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Nat. Commun. 2017, 8, 15679.

    32. [32]

      Cova, Tnia F. G. G.; Pais, Alberto A. C. C. Front. Chem. 2019, 7, 809.

    33. [33]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 6245.

    34. [34]

      McCulloch, W. S.; Pitts, W. Bull. Math. Biol. 1943, 52.

    35. [35]

      Gall, J.; Razavi, N.; Van Gool, L. An Introduction to Random Forests for Multi-class Object Detection, Springer-Verlag, Heidelberg, Germany, 2012, pp. 243-263.

    36. [36]

      Lim, A.; Breiman, L.; Cutler, A. Computer Science 2014 (data package and software).

    37. [37]

      Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 6385.

    38. [38]

      Ghosh, A. K.; Feng, T. J. Appl. Phys. 1973, 44, 2781.

    39. [39]

      Sun, W.; Li, M.; Li, Y.; Wu, Z.; Sun, Y.; Lu, S.; Xiao, Z.; Zhao, B.; Sun, K. Adv. Theor. Simul. 2019, 2, 1800116.

    40. [40]

      Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 7698.

    41. [41]

    42. [42]

      Fu, M. C. In 2016 Winter Simulation Conference, Arlington Virginia, 2016, pp. 659-670.

    43. [43]

      Xue, Y.; Li, H.; Ung, C. Y.; Yap, C. W.; Chen, Y. Z. Chem. Res. Toxicol. 2006, 19, 1030.

    44. [44]

      Lü, W. J.; Chen, Y. L.; Ma, W. P.; Zhang, X. Y.; Luan, F.; Liu, M. C.; Chen, X. G.; Hu, Z. D. Eur. J. Med. Chem. 2008, 43, 569.

    45. [45]

      Lü, W.; Xue, Y. Acta Phys.-Chim. Sin. 2010, 26, 471.

    46. [46]

      Li, B. K.; Yong, C.; Yang, X. G; Xue, Y.; Chen, Y. Z. Comput. Biol. Med. 43, 395.

    47. [47]

    48. [48]

      Barta, T. E.; Becker, D. P.; Bedell, L. J.; Crescenzo, G. A. D.; McDonald, J. J.; Mehta, P.; Munie, G. E.; Villamil, C. I. Bioorg. Med. Chem. Lett. 2001, 11, 2481.

    49. [49]

      Xue, D. Z.; Balachandran, P. V.; Hogden, J.; Theiler, J.; Xue, D. Q.; Lookman, T. Nat. Commun. 2016, 7, 11241.

    50. [50]

      Granda, J. M.; Donina, L.; Dragone, V.; Long, D. L.; Cronin, L. Nature 2018, 559, 7714.

    51. [51]

    52. [52]

      Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121.

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

      Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Nature 2018, 559, 547.

    58. [58]

      Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K. R.; Maurer, R. J. Nat. Commun. 2019, 10, 1.

    59. [59]

      Ye, S.; Hu, W.; Li, X.; Zhang, J. X.; Zhong, K.; Zhang, G. Z.; Luo, Y.; Mukamel, S.; Jiang, J. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11612.

    60. [60]

      Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Phys. Rev. Lett. 2018, 120, 036002.

    61. [61]

    62. [62]

      Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Phys. Rev. A 2019, 100, 022512.

    63. [63]

      Behler, J.; Parrinello, M. Phys. Rev. Lett. 2018, 98, 146401.

    64. [64]

      Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 28, 577.

    65. [65]

      Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Phys. Rev. Lett. 2010, 104, 136403.

    66. [66]

      Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192.

    67. [67]

      Podryabinkin, E. V.; Shapeev, A. V. Comput. Mater. Sci. 2017, 140, 171.

    68. [68]

      Podryabinkin, E. V.; Tikhonov, E. V.; Shapeev, A. V.; Oganov, A. R. Phys. Rev. B 2019, 99, 064114.

    69. [69]

      Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K. R. Sci. Adv. 2018, 3, e1603015.

    70. [70]

      Chmiela, S.; Sauceda, H. E.; Müller, K.-R.; Tkatchenko, A. Nat. Commun. 2018, 9, 3887.

    71. [71]

      Gastegger, M.; Behler, J.; Marquetand, P. Chem. Sci. 2018, 8, 6924.

    72. [72]

      Dral, P. O. J. Phys. Chem. Lett. 2020, 11, 2336.

    73. [73]

    74. [74]

    75. [75]

    76. [76]

      Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291.

    77. [77]

    78. [78]

      Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.

    79. [79]

    80. [80]

      Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Front Environ. Sci. Eng. 2016, 3, 80.

    81. [81]

      Duvenaud, D.; Dougal, M.; Jorge, A. I.; Rafa, G. B.; Timothy, H.; Alán, A. G.; Ryan, P. A. In Proceedings of Advances in Neural Information Processing Systems 28, MIT Press, Montreal, 2015, pp. 2215-2223.

    82. [82]

      Kanal, L. N.; Randall, N. C. Proceedings of the 1964 19th ACM National Conference, Association for Computing Machinery, New York, NY, USA, 1964, pp. 42.501-42.5020.

    83. [83]

      Viola, J.; Snow, D.; Jones, M. J. In Proceedings Ninth IEEE International Conference on Computer Vision, Springer-Verlag, Nice, 2003, pp. 734-741.

    84. [84]

      Riley, P. Nature 2019, 572, 27.

    85. [85]

      Baltz, E. A.; Trask, E.; Binderbauer, M.; Dikovsky, M.; Gota, H.; Mendoza, R.; Platt, J. C.; Riley, P. F. Sci. Rep. 2017, 7, 6425.

    86. [86]

      Lu, S.; Zhou, Q.; Guo, Y.; Zhang, Y.; Wu, Y.; Wang, J. Adv. Mater. 2020, 32, 2002658.

    87. [87]

      Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. In International Conference on Neural Information Processing Systems, MIT Press, Siem Reap, 2014, p. 32.

    88. [88]

      Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.; Morikawa, J.; Yoshida, R. ACS Cent Sci. 2019, 5, 1717.

    89. [89]

      Maryasin, B.; Marquetand, P.; Maulide, N. Angew. Chem. Int. Ed. 2018, 57, 6978.

    90. [90]

      Ward, Charles. 2012. https://www.mgi.gov/

    91. [91]

      de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L. Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; Analytis, J.; Dabo, I.; DeLongchamp, D. M.; Fiete, G. A.; Grason, G. M.; Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Zhao, J. C. npj Comput. Mater. 2019, 5, 41.

    92. [92]

      https://www.nsf.gov/pubs/2017/nsf17036/nsf17036.pdf

    93. [93]

      http://bigchem.eu/

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(149)
  • Abstract views(5057)
  • HTML views(1047)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return