Citation: Zhu Boyang, Wu Ruilong, Yu Xi. Artificial Intelligence for Contemporary Chemistry Research[J]. Acta Chimica Sinica, ;2020, 78(12): 1366-1382. doi: 10.6023/A20070306 shu

Artificial Intelligence for Contemporary Chemistry Research

  • Corresponding author: Zhu Boyang, luciszhu@outlook.com Yu Xi, xi.yu@tju.edu.cn
  • Received Date: 12 July 2020
    Available Online: 21 August 2020

    Fund Project: the National Natural Science Foundation of China 21773169National Key R & D Program 2017YFA0204503National Key R & D Program 2016YFB0401100the PEIYANG Young Scholars Program of Tianjin University 2018XRX-0007the College Student Innovation and Entrepreneurship Training Program of Tianjin University 201910056451Project supported by the National Natural Science Foundation of China (Nos. 21973069, 21773169, 21872103), National Key R & D Program (Nos. 2017YFA0204503, 2016YFB0401100), the PEIYANG Young Scholars Program of Tianjin University (No. 2018XRX-0007) and the College Student Innovation and Entrepreneurship Training Program of Tianjin University (No. 201910056451)the National Natural Science Foundation of China 21872103the National Natural Science Foundation of China 21973069

Figures(23)

  • Artificial intelligence (AI), especially the machine learning, is playing an increasingly important role in contemporary scientific research. Unlike the traditional computer program, machine learning can analyze a large number of data repeatedly and optimize its own model, a process which is called a "learning process". So that the AI can find the relationship underling the experiments from a large number of data, form a new model with better prediction and decisionmaking ability, and make an optimized strategy. The characteristics of chemical research just hit the strengths of machine learning. Chemical research often faces very complex material system and experimental process, so it is difficult to accurately analyze and making judgment through physical chemistry principles. Artificial intelligence can mine the correlation of massive experimental data generated in chemical experiments, help chemists make reasonable analysis and prediction, and therefore greatly accelerate the process of chemical research. This review presents the modern artificial intelligence method and its basic principles on solving chemical problems, by representative examples with specific machine learning algorithm. The application of artificial intelligence in chemical science is in a period of vigorous rise. Artificial intelligence has initially shown a powerful assist to chemical research. We hope this review can help more domestic chemical workers understand and use this powerful tool.
  • 加载中
    1. [1]

      Tang, Z. T.; Shao, K.; Zhao, D. B.; Zhu, Y. H. Control Theory & Applications 2017, 034, 1529 (in Chinese).
       

    2. [2]

      McKinney, S. M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G. C.; Darzi, A.; Etemadi, M.; Garcia-Vicente F.; Gilbert, F. J.; Halling-Brown, M.; Hassabis, D.; Jansen, S.; Karthikesalingam, A.; Kelly, C. J.; King, D.; Ledsam, J.R.; Melnick, D.; Mostofi, H.; Peng, L.; Reicher, J. J.; Romera-Paredes, B.; Sidebottom, R.; Suleyman, M.; Tse, D.; Young, K. C.; De, Fauw, J.; Shetty, S. Nature 2020, 577, 7788.

    3. [3]

    4. [4]

      Leon, F.; Lisa, C.; Curteanu, S. Mol. Cryst. Liq. Cryst. 2010, 518, 1542.

    5. [5]

      Wang, J.S.; Li, Z.; Yan, S.C.; Yue, X.; Ma, Y.Q.; Ma, L. RSC Adv. 2019, 9, 14797.

    6. [6]

      Sun, W.B.; Zheng, Y.J.; Yang, K.; Zhang, Q.; Shan, Akeel A.; Wu, Z.; Sun, Y.Y.; Feng, L.; Chen, D.Y.; Lu, S.R.; Li, Y.; Sun, K. Sci. Adv. 2019, 5, 4275.

    7. [7]

      Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Ding, C. T.; Luna, P.; Sedighian Rasouli, A.; Brodersen, P.; Sun, S.; Voznyy, O.; Tan, C. S.; Askerka, M.; Che, F. L.; Liu, M.; Seifitokaldani, A.; Pang, Y. J.; Lo, S. C.; Sargent, E. Nature 2020, 581, 178.

    8. [8]

      Wu, W.; Sun, Q. Scientia Sinica Physica, Mechanica & Astronomica 2018, 48, 54 (in Chinese). (吴炜, 孙强, 中国科学: 物理学 力学 天文学, 2018, 48, 54.)

    9. [9]

      Saunders, C.; Stitson, M. O.; Weston, J.; Holloway, R.; Bottou, L.; Scholkopf, B. Comput. Sci. 2002, 1, 1.

    10. [10]

      Safavian, S. R.; Landgrebe, D. IEEE Trans. Syst., Man, Cybern. 1991, 21, 660.

    11. [11]

    12. [12]

      Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P.I. IEEE Transactions on Computational Intelligence & Ai in Games, 2012, 4, 1.

    13. [13]

      Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatic —Second, Revised and Enlarged Edition, Volume I: Alphabetical Listing; Volume Ⅱ: Appendices, Bibliography, 2009.

    14. [14]

      Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, WILEY-VCH, Weinheim, Germany, 2000.

    15. [15]

      He, B.; Luo, Y.; Li, B. K.; Xue, Y.; Yu, L. T.; Qiu, X. L.; Yang, D. G. Acta Physico-Chimica Sinica 2015, 09, 1795 (in Chinese).

    16. [16]

      Wang, J. X.; Li, Y.; Yang, M.; Wang, Q. H.; Deng, G. W.; Yang, F.; Li, B. K. Chemical Research & Application 2019, 031, 1313 (in Chinese).

    17. [17]

      Wang, L.; Mao, H. T.; Zhang, L.; Liu, L. L.; Du, J. CIESC J. 2019, 70, 4722 (in Chinese).

    18. [18]

      Dai, Y.; Niu, L.; Zou, J.; Liu, D. Y.; Liu, H. J. Cent. South Univ. 2018, 25, 1535.

    19. [19]

      Ul-Haq, Z.; Ashraf, S.; Al Majid, A.; Barakat, A. Int. J. Mol. Sci. 2016, 17, 657.

    20. [20]

      Xu, Y. J.; Pei, J. F. Big Data Research 2017, 003, 45 (in Chinese).

    21. [21]

    22. [22]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 33.

    23. [23]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 34.

    24. [24]

      Ren, W.; Kong, D. X. Computers & Applied Chemistry, 2009, 11, 1455 (in Chinese). (任伟, 孔德信. 计算机与应用化学, 2009, 11, 1455.)

    25. [25]

      Dickert, F. L.; Hayden, O. Adv. Mater. 2000, 12, 311.

    26. [26]

      DRAGON http://www.talete.mi.it/

    27. [27]

      GRID http://www.moldiscovery.com/soft_grid.php

    28. [28]

      MOLE db http://michem.disat.unimib.it/mole_db/

    29. [29]

      Stein, H. S.; Gregoire, J.M. Chem. Sci. 2019, 10, 9640.

    30. [30]

      Mater, A. C.; Coote, M. L. J. Chem. Inf. Model. 2019, 59, 2545.

    31. [31]

      Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Nat. Commun. 2017, 8, 15679.

    32. [32]

      Cova, Tnia F. G. G.; Pais, Alberto A. C. C. Front. Chem. 2019, 7, 809.

    33. [33]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 6245.

    34. [34]

      McCulloch, W. S.; Pitts, W. Bull. Math. Biol. 1943, 52.

    35. [35]

      Gall, J.; Razavi, N.; Van Gool, L. An Introduction to Random Forests for Multi-class Object Detection, Springer-Verlag, Heidelberg, Germany, 2012, pp. 243-263.

    36. [36]

      Lim, A.; Breiman, L.; Cutler, A. Computer Science 2014 (data package and software).

    37. [37]

      Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 6385.

    38. [38]

      Ghosh, A. K.; Feng, T. J. Appl. Phys. 1973, 44, 2781.

    39. [39]

      Sun, W.; Li, M.; Li, Y.; Wu, Z.; Sun, Y.; Lu, S.; Xiao, Z.; Zhao, B.; Sun, K. Adv. Theor. Simul. 2019, 2, 1800116.

    40. [40]

      Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 7698.

    41. [41]

    42. [42]

      Fu, M. C. In 2016 Winter Simulation Conference, Arlington Virginia, 2016, pp. 659-670.

    43. [43]

      Xue, Y.; Li, H.; Ung, C. Y.; Yap, C. W.; Chen, Y. Z. Chem. Res. Toxicol. 2006, 19, 1030.

    44. [44]

      Lü, W. J.; Chen, Y. L.; Ma, W. P.; Zhang, X. Y.; Luan, F.; Liu, M. C.; Chen, X. G.; Hu, Z. D. Eur. J. Med. Chem. 2008, 43, 569.

    45. [45]

      Lü, W.; Xue, Y. Acta Phys.-Chim. Sin. 2010, 26, 471.

    46. [46]

      Li, B. K.; Yong, C.; Yang, X. G; Xue, Y.; Chen, Y. Z. Comput. Biol. Med. 43, 395.

    47. [47]

    48. [48]

      Barta, T. E.; Becker, D. P.; Bedell, L. J.; Crescenzo, G. A. D.; McDonald, J. J.; Mehta, P.; Munie, G. E.; Villamil, C. I. Bioorg. Med. Chem. Lett. 2001, 11, 2481.

    49. [49]

      Xue, D. Z.; Balachandran, P. V.; Hogden, J.; Theiler, J.; Xue, D. Q.; Lookman, T. Nat. Commun. 2016, 7, 11241.

    50. [50]

      Granda, J. M.; Donina, L.; Dragone, V.; Long, D. L.; Cronin, L. Nature 2018, 559, 7714.

    51. [51]

    52. [52]

      Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121.

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

      Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Nature 2018, 559, 547.

    58. [58]

      Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K. R.; Maurer, R. J. Nat. Commun. 2019, 10, 1.

    59. [59]

      Ye, S.; Hu, W.; Li, X.; Zhang, J. X.; Zhong, K.; Zhang, G. Z.; Luo, Y.; Mukamel, S.; Jiang, J. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11612.

    60. [60]

      Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Phys. Rev. Lett. 2018, 120, 036002.

    61. [61]

    62. [62]

      Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Phys. Rev. A 2019, 100, 022512.

    63. [63]

      Behler, J.; Parrinello, M. Phys. Rev. Lett. 2018, 98, 146401.

    64. [64]

      Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 28, 577.

    65. [65]

      Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Phys. Rev. Lett. 2010, 104, 136403.

    66. [66]

      Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192.

    67. [67]

      Podryabinkin, E. V.; Shapeev, A. V. Comput. Mater. Sci. 2017, 140, 171.

    68. [68]

      Podryabinkin, E. V.; Tikhonov, E. V.; Shapeev, A. V.; Oganov, A. R. Phys. Rev. B 2019, 99, 064114.

    69. [69]

      Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K. R. Sci. Adv. 2018, 3, e1603015.

    70. [70]

      Chmiela, S.; Sauceda, H. E.; Müller, K.-R.; Tkatchenko, A. Nat. Commun. 2018, 9, 3887.

    71. [71]

      Gastegger, M.; Behler, J.; Marquetand, P. Chem. Sci. 2018, 8, 6924.

    72. [72]

      Dral, P. O. J. Phys. Chem. Lett. 2020, 11, 2336.

    73. [73]

    74. [74]

    75. [75]

    76. [76]

      Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291.

    77. [77]

    78. [78]

      Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.

    79. [79]

    80. [80]

      Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Front Environ. Sci. Eng. 2016, 3, 80.

    81. [81]

      Duvenaud, D.; Dougal, M.; Jorge, A. I.; Rafa, G. B.; Timothy, H.; Alán, A. G.; Ryan, P. A. In Proceedings of Advances in Neural Information Processing Systems 28, MIT Press, Montreal, 2015, pp. 2215-2223.

    82. [82]

      Kanal, L. N.; Randall, N. C. Proceedings of the 1964 19th ACM National Conference, Association for Computing Machinery, New York, NY, USA, 1964, pp. 42.501-42.5020.

    83. [83]

      Viola, J.; Snow, D.; Jones, M. J. In Proceedings Ninth IEEE International Conference on Computer Vision, Springer-Verlag, Nice, 2003, pp. 734-741.

    84. [84]

      Riley, P. Nature 2019, 572, 27.

    85. [85]

      Baltz, E. A.; Trask, E.; Binderbauer, M.; Dikovsky, M.; Gota, H.; Mendoza, R.; Platt, J. C.; Riley, P. F. Sci. Rep. 2017, 7, 6425.

    86. [86]

      Lu, S.; Zhou, Q.; Guo, Y.; Zhang, Y.; Wu, Y.; Wang, J. Adv. Mater. 2020, 32, 2002658.

    87. [87]

      Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. In International Conference on Neural Information Processing Systems, MIT Press, Siem Reap, 2014, p. 32.

    88. [88]

      Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.; Morikawa, J.; Yoshida, R. ACS Cent Sci. 2019, 5, 1717.

    89. [89]

      Maryasin, B.; Marquetand, P.; Maulide, N. Angew. Chem. Int. Ed. 2018, 57, 6978.

    90. [90]

      Ward, Charles. 2012. https://www.mgi.gov/

    91. [91]

      de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L. Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; Analytis, J.; Dabo, I.; DeLongchamp, D. M.; Fiete, G. A.; Grason, G. M.; Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Zhao, J. C. npj Comput. Mater. 2019, 5, 41.

    92. [92]

      https://www.nsf.gov/pubs/2017/nsf17036/nsf17036.pdf

    93. [93]

      http://bigchem.eu/

  • 加载中
    1. [1]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    2. [2]

      Yu Fang . AI-Empowered Education: A Case Study of Self-Directed Learning with ChatGPT-4. University Chemistry, 2025, 40(9): 1-4. doi: 10.12461/PKU.DXHX202502013

    3. [3]

      Weigang Zhu Jianfeng Wang Qiang Qi Jing Li Zhicheng Zhang Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002

    4. [4]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    5. [5]

      Jianqiang Zheng Yongbin Huang Wencan Ming Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062

    6. [6]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 2310045-0. doi: 10.3866/PKU.WHXB202310045

    7. [7]

      Chang Guo Haipeng Yang Hui Fang Yingguo Zhao Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049

    8. [8]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    9. [9]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    10. [10]

      Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067

    11. [11]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    12. [12]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    13. [13]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    14. [14]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    15. [15]

      Lei Qin Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123

    16. [16]

      Xiao Ma Junjie Wang Xin Chen Jingcheng Li Lihong Zhao Xueping Sun Shaojuan Cheng Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085

    17. [17]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    18. [18]

      Yan Zhang Limin Zhou Xiaoyan Cao Mutai Bao . Exploring the Application of Artificial Intelligence in Marine-Themed Integrated Physical Chemistry Experiments. University Chemistry, 2025, 40(9): 118-125. doi: 10.12461/PKU.DXHX202503062

    19. [19]

      Wuyi Feng Di Zhao . Significance and Measures of Integrating Artificial Intelligence Technology into College Chemistry Teaching. University Chemistry, 2025, 40(9): 156-163. doi: 10.12461/PKU.DXHX202502107

    20. [20]

      Lingli Wu Shengbin Lei . Generative AI-Driven Innovative Chemistry Teaching: Current Status and Future Prospects. University Chemistry, 2025, 40(9): 206-219. doi: 10.12461/PKU.DXHX202503069

Metrics
  • PDF Downloads(185)
  • Abstract views(8705)
  • HTML views(1431)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return