Citation: Zhu Boyang, Wu Ruilong, Yu Xi. Artificial Intelligence for Contemporary Chemistry Research[J]. Acta Chimica Sinica, ;2020, 78(12): 1366-1382. doi: 10.6023/A20070306 shu

Artificial Intelligence for Contemporary Chemistry Research

  • Corresponding author: Zhu Boyang, luciszhu@outlook.com Yu Xi, xi.yu@tju.edu.cn
  • Received Date: 12 July 2020
    Available Online: 21 August 2020

    Fund Project: the National Natural Science Foundation of China 21773169National Key R & D Program 2017YFA0204503National Key R & D Program 2016YFB0401100the PEIYANG Young Scholars Program of Tianjin University 2018XRX-0007the College Student Innovation and Entrepreneurship Training Program of Tianjin University 201910056451Project supported by the National Natural Science Foundation of China (Nos. 21973069, 21773169, 21872103), National Key R & D Program (Nos. 2017YFA0204503, 2016YFB0401100), the PEIYANG Young Scholars Program of Tianjin University (No. 2018XRX-0007) and the College Student Innovation and Entrepreneurship Training Program of Tianjin University (No. 201910056451)the National Natural Science Foundation of China 21872103the National Natural Science Foundation of China 21973069

Figures(23)

  • Artificial intelligence (AI), especially the machine learning, is playing an increasingly important role in contemporary scientific research. Unlike the traditional computer program, machine learning can analyze a large number of data repeatedly and optimize its own model, a process which is called a "learning process". So that the AI can find the relationship underling the experiments from a large number of data, form a new model with better prediction and decisionmaking ability, and make an optimized strategy. The characteristics of chemical research just hit the strengths of machine learning. Chemical research often faces very complex material system and experimental process, so it is difficult to accurately analyze and making judgment through physical chemistry principles. Artificial intelligence can mine the correlation of massive experimental data generated in chemical experiments, help chemists make reasonable analysis and prediction, and therefore greatly accelerate the process of chemical research. This review presents the modern artificial intelligence method and its basic principles on solving chemical problems, by representative examples with specific machine learning algorithm. The application of artificial intelligence in chemical science is in a period of vigorous rise. Artificial intelligence has initially shown a powerful assist to chemical research. We hope this review can help more domestic chemical workers understand and use this powerful tool.
  • 加载中
    1. [1]

      Tang, Z. T.; Shao, K.; Zhao, D. B.; Zhu, Y. H. Control Theory & Applications 2017, 034, 1529 (in Chinese).
       

    2. [2]

      McKinney, S. M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G. C.; Darzi, A.; Etemadi, M.; Garcia-Vicente F.; Gilbert, F. J.; Halling-Brown, M.; Hassabis, D.; Jansen, S.; Karthikesalingam, A.; Kelly, C. J.; King, D.; Ledsam, J.R.; Melnick, D.; Mostofi, H.; Peng, L.; Reicher, J. J.; Romera-Paredes, B.; Sidebottom, R.; Suleyman, M.; Tse, D.; Young, K. C.; De, Fauw, J.; Shetty, S. Nature 2020, 577, 7788.

    3. [3]

    4. [4]

      Leon, F.; Lisa, C.; Curteanu, S. Mol. Cryst. Liq. Cryst. 2010, 518, 1542.

    5. [5]

      Wang, J.S.; Li, Z.; Yan, S.C.; Yue, X.; Ma, Y.Q.; Ma, L. RSC Adv. 2019, 9, 14797.

    6. [6]

      Sun, W.B.; Zheng, Y.J.; Yang, K.; Zhang, Q.; Shan, Akeel A.; Wu, Z.; Sun, Y.Y.; Feng, L.; Chen, D.Y.; Lu, S.R.; Li, Y.; Sun, K. Sci. Adv. 2019, 5, 4275.

    7. [7]

      Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Ding, C. T.; Luna, P.; Sedighian Rasouli, A.; Brodersen, P.; Sun, S.; Voznyy, O.; Tan, C. S.; Askerka, M.; Che, F. L.; Liu, M.; Seifitokaldani, A.; Pang, Y. J.; Lo, S. C.; Sargent, E. Nature 2020, 581, 178.

    8. [8]

      Wu, W.; Sun, Q. Scientia Sinica Physica, Mechanica & Astronomica 2018, 48, 54 (in Chinese). (吴炜, 孙强, 中国科学: 物理学 力学 天文学, 2018, 48, 54.)

    9. [9]

      Saunders, C.; Stitson, M. O.; Weston, J.; Holloway, R.; Bottou, L.; Scholkopf, B. Comput. Sci. 2002, 1, 1.

    10. [10]

      Safavian, S. R.; Landgrebe, D. IEEE Trans. Syst., Man, Cybern. 1991, 21, 660.

    11. [11]

    12. [12]

      Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P.I. IEEE Transactions on Computational Intelligence & Ai in Games, 2012, 4, 1.

    13. [13]

      Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatic —Second, Revised and Enlarged Edition, Volume I: Alphabetical Listing; Volume Ⅱ: Appendices, Bibliography, 2009.

    14. [14]

      Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, WILEY-VCH, Weinheim, Germany, 2000.

    15. [15]

      He, B.; Luo, Y.; Li, B. K.; Xue, Y.; Yu, L. T.; Qiu, X. L.; Yang, D. G. Acta Physico-Chimica Sinica 2015, 09, 1795 (in Chinese).

    16. [16]

      Wang, J. X.; Li, Y.; Yang, M.; Wang, Q. H.; Deng, G. W.; Yang, F.; Li, B. K. Chemical Research & Application 2019, 031, 1313 (in Chinese).

    17. [17]

      Wang, L.; Mao, H. T.; Zhang, L.; Liu, L. L.; Du, J. CIESC J. 2019, 70, 4722 (in Chinese).

    18. [18]

      Dai, Y.; Niu, L.; Zou, J.; Liu, D. Y.; Liu, H. J. Cent. South Univ. 2018, 25, 1535.

    19. [19]

      Ul-Haq, Z.; Ashraf, S.; Al Majid, A.; Barakat, A. Int. J. Mol. Sci. 2016, 17, 657.

    20. [20]

      Xu, Y. J.; Pei, J. F. Big Data Research 2017, 003, 45 (in Chinese).

    21. [21]

    22. [22]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 33.

    23. [23]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 34.

    24. [24]

      Ren, W.; Kong, D. X. Computers & Applied Chemistry, 2009, 11, 1455 (in Chinese). (任伟, 孔德信. 计算机与应用化学, 2009, 11, 1455.)

    25. [25]

      Dickert, F. L.; Hayden, O. Adv. Mater. 2000, 12, 311.

    26. [26]

      DRAGON http://www.talete.mi.it/

    27. [27]

      GRID http://www.moldiscovery.com/soft_grid.php

    28. [28]

      MOLE db http://michem.disat.unimib.it/mole_db/

    29. [29]

      Stein, H. S.; Gregoire, J.M. Chem. Sci. 2019, 10, 9640.

    30. [30]

      Mater, A. C.; Coote, M. L. J. Chem. Inf. Model. 2019, 59, 2545.

    31. [31]

      Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Nat. Commun. 2017, 8, 15679.

    32. [32]

      Cova, Tnia F. G. G.; Pais, Alberto A. C. C. Front. Chem. 2019, 7, 809.

    33. [33]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 6245.

    34. [34]

      McCulloch, W. S.; Pitts, W. Bull. Math. Biol. 1943, 52.

    35. [35]

      Gall, J.; Razavi, N.; Van Gool, L. An Introduction to Random Forests for Multi-class Object Detection, Springer-Verlag, Heidelberg, Germany, 2012, pp. 243-263.

    36. [36]

      Lim, A.; Breiman, L.; Cutler, A. Computer Science 2014 (data package and software).

    37. [37]

      Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 6385.

    38. [38]

      Ghosh, A. K.; Feng, T. J. Appl. Phys. 1973, 44, 2781.

    39. [39]

      Sun, W.; Li, M.; Li, Y.; Wu, Z.; Sun, Y.; Lu, S.; Xiao, Z.; Zhao, B.; Sun, K. Adv. Theor. Simul. 2019, 2, 1800116.

    40. [40]

      Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 7698.

    41. [41]

    42. [42]

      Fu, M. C. In 2016 Winter Simulation Conference, Arlington Virginia, 2016, pp. 659-670.

    43. [43]

      Xue, Y.; Li, H.; Ung, C. Y.; Yap, C. W.; Chen, Y. Z. Chem. Res. Toxicol. 2006, 19, 1030.

    44. [44]

      Lü, W. J.; Chen, Y. L.; Ma, W. P.; Zhang, X. Y.; Luan, F.; Liu, M. C.; Chen, X. G.; Hu, Z. D. Eur. J. Med. Chem. 2008, 43, 569.

    45. [45]

      Lü, W.; Xue, Y. Acta Phys.-Chim. Sin. 2010, 26, 471.

    46. [46]

      Li, B. K.; Yong, C.; Yang, X. G; Xue, Y.; Chen, Y. Z. Comput. Biol. Med. 43, 395.

    47. [47]

    48. [48]

      Barta, T. E.; Becker, D. P.; Bedell, L. J.; Crescenzo, G. A. D.; McDonald, J. J.; Mehta, P.; Munie, G. E.; Villamil, C. I. Bioorg. Med. Chem. Lett. 2001, 11, 2481.

    49. [49]

      Xue, D. Z.; Balachandran, P. V.; Hogden, J.; Theiler, J.; Xue, D. Q.; Lookman, T. Nat. Commun. 2016, 7, 11241.

    50. [50]

      Granda, J. M.; Donina, L.; Dragone, V.; Long, D. L.; Cronin, L. Nature 2018, 559, 7714.

    51. [51]

    52. [52]

      Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121.

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

      Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Nature 2018, 559, 547.

    58. [58]

      Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K. R.; Maurer, R. J. Nat. Commun. 2019, 10, 1.

    59. [59]

      Ye, S.; Hu, W.; Li, X.; Zhang, J. X.; Zhong, K.; Zhang, G. Z.; Luo, Y.; Mukamel, S.; Jiang, J. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11612.

    60. [60]

      Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Phys. Rev. Lett. 2018, 120, 036002.

    61. [61]

    62. [62]

      Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Phys. Rev. A 2019, 100, 022512.

    63. [63]

      Behler, J.; Parrinello, M. Phys. Rev. Lett. 2018, 98, 146401.

    64. [64]

      Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 28, 577.

    65. [65]

      Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Phys. Rev. Lett. 2010, 104, 136403.

    66. [66]

      Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192.

    67. [67]

      Podryabinkin, E. V.; Shapeev, A. V. Comput. Mater. Sci. 2017, 140, 171.

    68. [68]

      Podryabinkin, E. V.; Tikhonov, E. V.; Shapeev, A. V.; Oganov, A. R. Phys. Rev. B 2019, 99, 064114.

    69. [69]

      Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K. R. Sci. Adv. 2018, 3, e1603015.

    70. [70]

      Chmiela, S.; Sauceda, H. E.; Müller, K.-R.; Tkatchenko, A. Nat. Commun. 2018, 9, 3887.

    71. [71]

      Gastegger, M.; Behler, J.; Marquetand, P. Chem. Sci. 2018, 8, 6924.

    72. [72]

      Dral, P. O. J. Phys. Chem. Lett. 2020, 11, 2336.

    73. [73]

    74. [74]

    75. [75]

    76. [76]

      Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291.

    77. [77]

    78. [78]

      Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.

    79. [79]

    80. [80]

      Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Front Environ. Sci. Eng. 2016, 3, 80.

    81. [81]

      Duvenaud, D.; Dougal, M.; Jorge, A. I.; Rafa, G. B.; Timothy, H.; Alán, A. G.; Ryan, P. A. In Proceedings of Advances in Neural Information Processing Systems 28, MIT Press, Montreal, 2015, pp. 2215-2223.

    82. [82]

      Kanal, L. N.; Randall, N. C. Proceedings of the 1964 19th ACM National Conference, Association for Computing Machinery, New York, NY, USA, 1964, pp. 42.501-42.5020.

    83. [83]

      Viola, J.; Snow, D.; Jones, M. J. In Proceedings Ninth IEEE International Conference on Computer Vision, Springer-Verlag, Nice, 2003, pp. 734-741.

    84. [84]

      Riley, P. Nature 2019, 572, 27.

    85. [85]

      Baltz, E. A.; Trask, E.; Binderbauer, M.; Dikovsky, M.; Gota, H.; Mendoza, R.; Platt, J. C.; Riley, P. F. Sci. Rep. 2017, 7, 6425.

    86. [86]

      Lu, S.; Zhou, Q.; Guo, Y.; Zhang, Y.; Wu, Y.; Wang, J. Adv. Mater. 2020, 32, 2002658.

    87. [87]

      Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. In International Conference on Neural Information Processing Systems, MIT Press, Siem Reap, 2014, p. 32.

    88. [88]

      Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.; Morikawa, J.; Yoshida, R. ACS Cent Sci. 2019, 5, 1717.

    89. [89]

      Maryasin, B.; Marquetand, P.; Maulide, N. Angew. Chem. Int. Ed. 2018, 57, 6978.

    90. [90]

      Ward, Charles. 2012. https://www.mgi.gov/

    91. [91]

      de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L. Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; Analytis, J.; Dabo, I.; DeLongchamp, D. M.; Fiete, G. A.; Grason, G. M.; Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Zhao, J. C. npj Comput. Mater. 2019, 5, 41.

    92. [92]

      https://www.nsf.gov/pubs/2017/nsf17036/nsf17036.pdf

    93. [93]

      http://bigchem.eu/

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    6. [6]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    7. [7]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    8. [8]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    9. [9]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    10. [10]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    13. [13]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    14. [14]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    15. [15]

      Qingfeng Zhang Shang-E Wei Hua Hou Xuan Zhao Zixuan Yang Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047

    16. [16]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    17. [17]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

Metrics
  • PDF Downloads(159)
  • Abstract views(5354)
  • HTML views(1091)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return