Citation: Zhu Boyang, Wu Ruilong, Yu Xi. Artificial Intelligence for Contemporary Chemistry Research[J]. Acta Chimica Sinica, ;2020, 78(12): 1366-1382. doi: 10.6023/A20070306 shu

Artificial Intelligence for Contemporary Chemistry Research

  • Corresponding author: Zhu Boyang, luciszhu@outlook.com Yu Xi, xi.yu@tju.edu.cn
  • Received Date: 12 July 2020
    Available Online: 21 August 2020

    Fund Project: the National Natural Science Foundation of China 21773169National Key R & D Program 2017YFA0204503National Key R & D Program 2016YFB0401100the PEIYANG Young Scholars Program of Tianjin University 2018XRX-0007the College Student Innovation and Entrepreneurship Training Program of Tianjin University 201910056451Project supported by the National Natural Science Foundation of China (Nos. 21973069, 21773169, 21872103), National Key R & D Program (Nos. 2017YFA0204503, 2016YFB0401100), the PEIYANG Young Scholars Program of Tianjin University (No. 2018XRX-0007) and the College Student Innovation and Entrepreneurship Training Program of Tianjin University (No. 201910056451)the National Natural Science Foundation of China 21872103the National Natural Science Foundation of China 21973069

Figures(23)

  • Artificial intelligence (AI), especially the machine learning, is playing an increasingly important role in contemporary scientific research. Unlike the traditional computer program, machine learning can analyze a large number of data repeatedly and optimize its own model, a process which is called a "learning process". So that the AI can find the relationship underling the experiments from a large number of data, form a new model with better prediction and decisionmaking ability, and make an optimized strategy. The characteristics of chemical research just hit the strengths of machine learning. Chemical research often faces very complex material system and experimental process, so it is difficult to accurately analyze and making judgment through physical chemistry principles. Artificial intelligence can mine the correlation of massive experimental data generated in chemical experiments, help chemists make reasonable analysis and prediction, and therefore greatly accelerate the process of chemical research. This review presents the modern artificial intelligence method and its basic principles on solving chemical problems, by representative examples with specific machine learning algorithm. The application of artificial intelligence in chemical science is in a period of vigorous rise. Artificial intelligence has initially shown a powerful assist to chemical research. We hope this review can help more domestic chemical workers understand and use this powerful tool.
  • 加载中
    1. [1]

      Tang, Z. T.; Shao, K.; Zhao, D. B.; Zhu, Y. H. Control Theory & Applications 2017, 034, 1529 (in Chinese).
       

    2. [2]

      McKinney, S. M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G. C.; Darzi, A.; Etemadi, M.; Garcia-Vicente F.; Gilbert, F. J.; Halling-Brown, M.; Hassabis, D.; Jansen, S.; Karthikesalingam, A.; Kelly, C. J.; King, D.; Ledsam, J.R.; Melnick, D.; Mostofi, H.; Peng, L.; Reicher, J. J.; Romera-Paredes, B.; Sidebottom, R.; Suleyman, M.; Tse, D.; Young, K. C.; De, Fauw, J.; Shetty, S. Nature 2020, 577, 7788.

    3. [3]

    4. [4]

      Leon, F.; Lisa, C.; Curteanu, S. Mol. Cryst. Liq. Cryst. 2010, 518, 1542.

    5. [5]

      Wang, J.S.; Li, Z.; Yan, S.C.; Yue, X.; Ma, Y.Q.; Ma, L. RSC Adv. 2019, 9, 14797.

    6. [6]

      Sun, W.B.; Zheng, Y.J.; Yang, K.; Zhang, Q.; Shan, Akeel A.; Wu, Z.; Sun, Y.Y.; Feng, L.; Chen, D.Y.; Lu, S.R.; Li, Y.; Sun, K. Sci. Adv. 2019, 5, 4275.

    7. [7]

      Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Ding, C. T.; Luna, P.; Sedighian Rasouli, A.; Brodersen, P.; Sun, S.; Voznyy, O.; Tan, C. S.; Askerka, M.; Che, F. L.; Liu, M.; Seifitokaldani, A.; Pang, Y. J.; Lo, S. C.; Sargent, E. Nature 2020, 581, 178.

    8. [8]

      Wu, W.; Sun, Q. Scientia Sinica Physica, Mechanica & Astronomica 2018, 48, 54 (in Chinese). (吴炜, 孙强, 中国科学: 物理学 力学 天文学, 2018, 48, 54.)

    9. [9]

      Saunders, C.; Stitson, M. O.; Weston, J.; Holloway, R.; Bottou, L.; Scholkopf, B. Comput. Sci. 2002, 1, 1.

    10. [10]

      Safavian, S. R.; Landgrebe, D. IEEE Trans. Syst., Man, Cybern. 1991, 21, 660.

    11. [11]

    12. [12]

      Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P.I. IEEE Transactions on Computational Intelligence & Ai in Games, 2012, 4, 1.

    13. [13]

      Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatic —Second, Revised and Enlarged Edition, Volume I: Alphabetical Listing; Volume Ⅱ: Appendices, Bibliography, 2009.

    14. [14]

      Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, WILEY-VCH, Weinheim, Germany, 2000.

    15. [15]

      He, B.; Luo, Y.; Li, B. K.; Xue, Y.; Yu, L. T.; Qiu, X. L.; Yang, D. G. Acta Physico-Chimica Sinica 2015, 09, 1795 (in Chinese).

    16. [16]

      Wang, J. X.; Li, Y.; Yang, M.; Wang, Q. H.; Deng, G. W.; Yang, F.; Li, B. K. Chemical Research & Application 2019, 031, 1313 (in Chinese).

    17. [17]

      Wang, L.; Mao, H. T.; Zhang, L.; Liu, L. L.; Du, J. CIESC J. 2019, 70, 4722 (in Chinese).

    18. [18]

      Dai, Y.; Niu, L.; Zou, J.; Liu, D. Y.; Liu, H. J. Cent. South Univ. 2018, 25, 1535.

    19. [19]

      Ul-Haq, Z.; Ashraf, S.; Al Majid, A.; Barakat, A. Int. J. Mol. Sci. 2016, 17, 657.

    20. [20]

      Xu, Y. J.; Pei, J. F. Big Data Research 2017, 003, 45 (in Chinese).

    21. [21]

    22. [22]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 33.

    23. [23]

      Mauri, A.; Consonni, V.; Todeschini, R. Molecular Descriptors, Vol. 8, Eds.: Puzyn, T.; Leszczynski, J.; Cronin, M. T. D., Springer, New York, 2009, p. 34.

    24. [24]

      Ren, W.; Kong, D. X. Computers & Applied Chemistry, 2009, 11, 1455 (in Chinese). (任伟, 孔德信. 计算机与应用化学, 2009, 11, 1455.)

    25. [25]

      Dickert, F. L.; Hayden, O. Adv. Mater. 2000, 12, 311.

    26. [26]

      DRAGON http://www.talete.mi.it/

    27. [27]

      GRID http://www.moldiscovery.com/soft_grid.php

    28. [28]

      MOLE db http://michem.disat.unimib.it/mole_db/

    29. [29]

      Stein, H. S.; Gregoire, J.M. Chem. Sci. 2019, 10, 9640.

    30. [30]

      Mater, A. C.; Coote, M. L. J. Chem. Inf. Model. 2019, 59, 2545.

    31. [31]

      Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Nat. Commun. 2017, 8, 15679.

    32. [32]

      Cova, Tnia F. G. G.; Pais, Alberto A. C. C. Front. Chem. 2019, 7, 809.

    33. [33]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 6245.

    34. [34]

      McCulloch, W. S.; Pitts, W. Bull. Math. Biol. 1943, 52.

    35. [35]

      Gall, J.; Razavi, N.; Van Gool, L. An Introduction to Random Forests for Multi-class Object Detection, Springer-Verlag, Heidelberg, Germany, 2012, pp. 243-263.

    36. [36]

      Lim, A.; Breiman, L.; Cutler, A. Computer Science 2014 (data package and software).

    37. [37]

      Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 6385.

    38. [38]

      Ghosh, A. K.; Feng, T. J. Appl. Phys. 1973, 44, 2781.

    39. [39]

      Sun, W.; Li, M.; Li, Y.; Wu, Z.; Sun, Y.; Lu, S.; Xiao, Z.; Zhao, B.; Sun, K. Adv. Theor. Simul. 2019, 2, 1800116.

    40. [40]

      Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 7698.

    41. [41]

    42. [42]

      Fu, M. C. In 2016 Winter Simulation Conference, Arlington Virginia, 2016, pp. 659-670.

    43. [43]

      Xue, Y.; Li, H.; Ung, C. Y.; Yap, C. W.; Chen, Y. Z. Chem. Res. Toxicol. 2006, 19, 1030.

    44. [44]

      Lü, W. J.; Chen, Y. L.; Ma, W. P.; Zhang, X. Y.; Luan, F.; Liu, M. C.; Chen, X. G.; Hu, Z. D. Eur. J. Med. Chem. 2008, 43, 569.

    45. [45]

      Lü, W.; Xue, Y. Acta Phys.-Chim. Sin. 2010, 26, 471.

    46. [46]

      Li, B. K.; Yong, C.; Yang, X. G; Xue, Y.; Chen, Y. Z. Comput. Biol. Med. 43, 395.

    47. [47]

    48. [48]

      Barta, T. E.; Becker, D. P.; Bedell, L. J.; Crescenzo, G. A. D.; McDonald, J. J.; Mehta, P.; Munie, G. E.; Villamil, C. I. Bioorg. Med. Chem. Lett. 2001, 11, 2481.

    49. [49]

      Xue, D. Z.; Balachandran, P. V.; Hogden, J.; Theiler, J.; Xue, D. Q.; Lookman, T. Nat. Commun. 2016, 7, 11241.

    50. [50]

      Granda, J. M.; Donina, L.; Dragone, V.; Long, D. L.; Cronin, L. Nature 2018, 559, 7714.

    51. [51]

    52. [52]

      Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121.

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

      Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Nature 2018, 559, 547.

    58. [58]

      Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K. R.; Maurer, R. J. Nat. Commun. 2019, 10, 1.

    59. [59]

      Ye, S.; Hu, W.; Li, X.; Zhang, J. X.; Zhong, K.; Zhang, G. Z.; Luo, Y.; Mukamel, S.; Jiang, J. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11612.

    60. [60]

      Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Phys. Rev. Lett. 2018, 120, 036002.

    61. [61]

    62. [62]

      Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Phys. Rev. A 2019, 100, 022512.

    63. [63]

      Behler, J.; Parrinello, M. Phys. Rev. Lett. 2018, 98, 146401.

    64. [64]

      Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 28, 577.

    65. [65]

      Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Phys. Rev. Lett. 2010, 104, 136403.

    66. [66]

      Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192.

    67. [67]

      Podryabinkin, E. V.; Shapeev, A. V. Comput. Mater. Sci. 2017, 140, 171.

    68. [68]

      Podryabinkin, E. V.; Tikhonov, E. V.; Shapeev, A. V.; Oganov, A. R. Phys. Rev. B 2019, 99, 064114.

    69. [69]

      Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K. R. Sci. Adv. 2018, 3, e1603015.

    70. [70]

      Chmiela, S.; Sauceda, H. E.; Müller, K.-R.; Tkatchenko, A. Nat. Commun. 2018, 9, 3887.

    71. [71]

      Gastegger, M.; Behler, J.; Marquetand, P. Chem. Sci. 2018, 8, 6924.

    72. [72]

      Dral, P. O. J. Phys. Chem. Lett. 2020, 11, 2336.

    73. [73]

    74. [74]

    75. [75]

    76. [76]

      Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291.

    77. [77]

    78. [78]

      Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.

    79. [79]

    80. [80]

      Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Front Environ. Sci. Eng. 2016, 3, 80.

    81. [81]

      Duvenaud, D.; Dougal, M.; Jorge, A. I.; Rafa, G. B.; Timothy, H.; Alán, A. G.; Ryan, P. A. In Proceedings of Advances in Neural Information Processing Systems 28, MIT Press, Montreal, 2015, pp. 2215-2223.

    82. [82]

      Kanal, L. N.; Randall, N. C. Proceedings of the 1964 19th ACM National Conference, Association for Computing Machinery, New York, NY, USA, 1964, pp. 42.501-42.5020.

    83. [83]

      Viola, J.; Snow, D.; Jones, M. J. In Proceedings Ninth IEEE International Conference on Computer Vision, Springer-Verlag, Nice, 2003, pp. 734-741.

    84. [84]

      Riley, P. Nature 2019, 572, 27.

    85. [85]

      Baltz, E. A.; Trask, E.; Binderbauer, M.; Dikovsky, M.; Gota, H.; Mendoza, R.; Platt, J. C.; Riley, P. F. Sci. Rep. 2017, 7, 6425.

    86. [86]

      Lu, S.; Zhou, Q.; Guo, Y.; Zhang, Y.; Wu, Y.; Wang, J. Adv. Mater. 2020, 32, 2002658.

    87. [87]

      Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. In International Conference on Neural Information Processing Systems, MIT Press, Siem Reap, 2014, p. 32.

    88. [88]

      Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.; Morikawa, J.; Yoshida, R. ACS Cent Sci. 2019, 5, 1717.

    89. [89]

      Maryasin, B.; Marquetand, P.; Maulide, N. Angew. Chem. Int. Ed. 2018, 57, 6978.

    90. [90]

      Ward, Charles. 2012. https://www.mgi.gov/

    91. [91]

      de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L. Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; Analytis, J.; Dabo, I.; DeLongchamp, D. M.; Fiete, G. A.; Grason, G. M.; Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Zhao, J. C. npj Comput. Mater. 2019, 5, 41.

    92. [92]

      https://www.nsf.gov/pubs/2017/nsf17036/nsf17036.pdf

    93. [93]

      http://bigchem.eu/

  • 加载中
    1. [1]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    2. [2]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    3. [3]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    4. [4]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    6. [6]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    7. [7]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    11. [11]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    12. [12]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    20. [20]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

Metrics
  • PDF Downloads(173)
  • Abstract views(6004)
  • HTML views(1224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return