Citation: Zhou Jiashen, Zhang Lin, Zhang Liang. Advances on Mechanism and Drug Discovery of Type-Ⅱ Fatty Acid Biosynthesis Pathway[J]. Acta Chimica Sinica, ;2020, 78(12): 1383-1398. doi: 10.6023/A20070299 shu

Advances on Mechanism and Drug Discovery of Type-Ⅱ Fatty Acid Biosynthesis Pathway

  • Corresponding author: Zhang Liang, liangzhang2014@sjtu.edu.cn
  • Received Date: 8 July 2020
    Available Online: 18 September 2020

    Fund Project: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Training Program) (No. 91853118) and Youth Program of National Natural Science Foundation of China (No. 21722802)the Major Research Plan of the National Natural Science Foundation of China(Training Program) 91853118Youth Program of National Natural Science Foundation of China 21722802

Figures(8)

  • Type-Ⅱ fatty acid biosynthesis pathway (FAS-Ⅱ) is the only essential biosynthesis pathway that producing saturated and unsaturated fatty acids for bacteria and plant cell assembly and cellular metabolism. It utilizes a series of individual enzymes encoded by discrete genes to stepwisely catalyze lipid chain growing carried by the substrate carrier protein-acyl carrier protein (ACP). Due to its indispensable biological role in bacteria growth, as well as the distinct biological regulation mechanisms from mammalian fatty acid biosynthesis (FAS-Ⅰ), the enzymes involved in FAS-Ⅱ have been considered as important anti-pathogenic drug targets for a long time. Hence, investigating the catalysis and dynamic regulation mechanisms of FAS-Ⅱ, developing novel anti-pathogenic drugs against the enzymes involved in FAS-Ⅱ is critical to the field. We here summarize the catalytic mechanism studies and inhibitor discovery work involved in FAS-Ⅱ so far, which may potentially facilitate further understanding of FAS-Ⅱ biological functions as well as antibacterial drug discovery for infectious diseases.
  • 加载中
    1. [1]

      Smith, S.; Witkowski, A.; Joshi, A. K. Prog. Lipid Res. 2003, 42, 289.

    2. [2]

      White, S. W.; Zheng, J.; Zhang, Y. M.; Rock, C.O. Annu. Rev. Biochem. 2005, 74, 791.

    3. [3]

      Cronan, J. E.; Thomas, J. Methods Enzymol. 2009, 459, 395.

    4. [4]

      Anghel, S. I.; Wahli, W. Cell Res. 2007, 17, 486.

    5. [5]

      Clay, H. B.; Parl, A. K.; Mitchell, S. L.; Singh, L.; Bell, L. N.; Murdock, D. G. PLoS One 2016, 11, e0151171.

    6. [6]

      Nathan, C. J. Exp. Med. 2017, 214, 2175.

    7. [7]

      Sukheja, P.; Kumar, P.; Mittal, N.; Li, S. G.; Singleton, E.; Russo, R.; Perryman, A. L.; Shrestha, R.; Awasthi, D.; Husain, S.; Soteropoulos, P.; Brukh, R.; Connell, N.; Freundlich, J. S.; Alland, D. mBio 2017, 8, e02022.

    8. [8]

      Ballinger, E.; Mosior, J.; Hartman, T.; Burns-Huang, K.; Gold, B.; Morris, R.; Goullieux, L.; Blanc, I.; Vaubourgeix, J.; Lagrange, S.; Fraisse, L.; Sans, S.; Couturier, C.; Bacque, E.; Rhee, K.; Scarry, S. M.; Aube, J.; Yang, G.; Ouerfelli, O.; Schnappinger, D.; Ioerger, T. R.; Engelhart, C. A.; McConnell, J. A.; McAulay, K.; Fay, A.; Roubert, C.; Sacchettini, J.; Nathan, C. Science 2019, 363, 6426.

    9. [9]

      Thorell, K.; Lehours, P.; Vale, F. F. Helicobacter 2017, 22 Suppl 1, e12409.

    10. [10]

      Jimenez-Diaz, L.; Caballero, A.; Perez-Hernandez, N.; Segura, A. Microb. Biotechnol. 2017, 10, 103.

    11. [11]

      Babu, M.; Greenblatt, J. F.; Emili, A.; Strynadka, N. C.; Reithmeier, R. A.; Moraes, T. F. Structure 2010, 18, 1450.

    12. [12]

      Ohlrogge, J.; Savage, L.; Jaworski, J.; Voelker, T.; Postbeittenmiller, D. Arch. Biochem. Biophys. 1995, 317, 185.

    13. [13]

      Chan, D. I.; Chu, B. C.; Lau, C. K.; Hunter, H. N.; Byers, D. M.; Vogel, H. J. J. Biol. Chem. 2010, 285, 30558.

    14. [14]

      Dall'aglio, P.; Arthur, C. J.; Williams, C.; Vasilakis, K.; Maple, H. J.; Crosby, J.; Crump, M. P.; Hadfield, A. T. Biochemistry 2011, 50, 5704.

    15. [15]

      Marcella, A. M.; Culbertson, S. J.; Shogren-Knaak, M. A.; Barb, A. W. J. Mol. Biol. 2017, 429, 3763.

    16. [16]

      Keating, D. H.; Carey, M. R.; Cronan, J. E. J. Biol. Chem. 1995, 270, 22229.

    17. [17]

      Bunkoczi, G.; Pasta, S.; Joshi, A.; Wu, X.; Kavanagh, K. L.; Smith, S.; Oppermann, U. Chem. Biol. 2007, 14, 1243.

    18. [18]

      Joseph-McCarthy, D.; Parris, K.; Huang, A.; Failli, A.; Quagliato, D.; Dushin, E. G.; Novikova, E.; Severina, E.; Tuckman, M.; Petersen, P. J.; Dean, C.; Fritz, C. C.; Meshulam, T.; DeCenzo, M.; Dick, L.; McFadyen, I. J.; Somers, W. S.; Lovering, F.; Gilbert, A. M. J. Med. Chem. 2005, 48, 7960.

    19. [19]

      Chu, M.; Mierzwa, R.; Xu, L.; Yang, S. W.; He, L.; Patel, M.; Stafford, J.; Macinga, D.; Black, T.; Chan, T. M.; Gullo, V. Bioorg. Med. Chem. Lett. 2003, 13, 3827.

    20. [20]

      Ruch, F. E.; Vagelos, P. R. J. Biol. Chem. 1973, 248, 8095.

    21. [21]

      Hong, S. K.; Kim, K. H.; Park, J. K.; Jeong, K. W.; Kim, Y.; Kim, E. E. FEBS Lett. 2010, 584, 1240.

    22. [22]

      Lee, W. C.; Park, J.; Balasubramanian, P. K.; Kim, Y. Biochem. Biophys. Res. Commun. 2018, 505, 208.

    23. [23]

      Li, Z.; Huang, Y.; Ge, J.; Fan, H.; Zhou, X.; Li, S.; Bartlam, M.; Wang, H.; Rao, Z. J. Mol. Biol. 2007, 371, 1075.

    24. [24]

      Keatinge-Clay, A. T.; Shelat, A. A.; Savage, D. F.; Tsai, S.-C.; Miercke, L. J. W.; O'Connell, J. D.; Khosla, C.; Stroud, R. M. Structure 2003, 11, 147.

    25. [25]

      Liu, W.; Han, C.; Hu, L.; Chen, K.; Shen, X.; Jiang, H. FEBS Lett. 2006, 580, 697.

    26. [26]

      Kong, Y. H.; Zhang, L.; Yang, Z. Y.; Han, C.; Hu, L. H.; Jiang, H. L.; Shen, X. Acta Pharmacol. Sin. 2008, 29, 870.

    27. [27]

      Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. Biochimie 2018, 149, 18.

    28. [28]

      Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. BBA-Proteins Proteom 2018, 1866, 1131.

    29. [29]

      Li, Y.; Florova, G.; Reynolds, K. A. J. Bacteriol. 2005, 187, 3795.

    30. [30]

      Han, L.; Lobo, S.; Reynolds, K. A. J. Bacteriol. 1998, 180, 4481.

    31. [31]

      Tsay, J. T.; Oh, W.; Larson, T. J.; Jackowski, S.; Rock, C. O. J. Biol. Chem. 1992, 267, 6807.

    32. [32]

      Gajiwala, K. S.; Margosiak, S.; Lu, J.; Cortez, J.; Su, Y.; Nie, Z.; Appelt, K. FEBS Lett. 2009, 583, 2939.

    33. [33]

      Yuan, Y.; Sachdeva, M.; Leeds, J. A.; Meredith, T. C. J. Bacteriol. 2012, 194, 5171.

    34. [34]

      Milligan, J. C.; Lee, D. J.; Jackson, D. R.; Schaub, A. J.; Beld, J.; Barajas, J. F.; Hale, J. J.; Luo, R.; Burkart, M. D.; Tsai, S. C. Nat. Chem. Biol. 2019, 15, 669.

    35. [35]

      Mindrebo, J. T.; Patel, A.; Kim, W. E.; Davis, T. D.; Chen, A.; Bartholow, T. G.; La Clair, J. J.; McCammon, J. A.; Noel, J. P.; Burkart, M. D. Nat. Commun. 2020, 11, 1727.

    36. [36]

      Nanson, J. D.; Himiari, Z.; Swarbrick, C. M.; Forwood, J. K. Sci. Rep. 2015, 5, 14797.

    37. [37]

      Price, A. C.; Choi, K. H.; Heath, R. J.; Li, Z.; White, S. W.; Rock, C. O. J. Biol. Chem. 2001, 276, 6551.

    38. [38]

      Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S. L.; Herath, K.; Cummings, R.; Salazar, O.; González, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully, D. F.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.

    39. [39]

      Daines, R. A.; Pendrak, I.; Sham, K.; Van Aller, G. S.; Konstantinidis, A. K.; Lonsdale, J. T.; Janson, C. A.; Qiu, X.; Brandt, M.; Khandekar, S. S.; Silverman, C.; Head, M. S. J. Med. Chem. 2003, 46, 5.

    40. [40]

      McKinney, D. C.; Eyermann, C. J.; Gu, R. F.; Hu, J.; Kazmirski, S. L.; Lahiri, S. D.; McKenzie, A. R.; Shapiro, A. B.; Breault, G. ACS Infect. Dis. 2016, 2, 456.

    41. [41]

      Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.

    42. [42]

      Zheng, Z.; Parsons, J. B.; Tangallapally, R.; Zhang, W.; Rock, C. O.; Lee, R. E. Bioorg. Med. Chem. Lett. 2014, 24, 2585.

    43. [43]

      Kallberg, Y.; Oppermann, U.; Jornvall, H.; Persson, B. Eur. J. Biochem. 2002, 269, 4409.

    44. [44]

      Hou, J.; Zheng, H.; Chruszcz, M.; Zimmerman, M. D.; Shumilin, I. A.; Osinski, T.; Demas, M.; Grimshaw, S.; Minor, W. J. Bacteriol. 2016, 198, 463.

    45. [45]

      Price, A. C.; Zhang, Y.-M.; Rock, C. O.; White, S. W. Biochemistry 2001, 40, 12772.

    46. [46]

      Silva, R. G.; Rosado, L. A.; Santos, D. S.; Basso, L. A. Arch. Biochem. Biophys. 2008, 471, 1.

    47. [47]

      Price, A. C.; Zhang, Y. M.; Rock, C. O.; White, S. W. Structure 2004, 12, 417.

    48. [48]

      Cohen-Gonsaud, M.; Ducasse-Cabanot, S.; Quemard, A.; Labesse, G. Proteins 2005, 60, 392.

    49. [49]

      Cukier, C. D.; Hope, A. G.; Elamin, A. A.; Moynie, L.; Schnell, R.; Schach, S.; Kneuper, H.; Singh, M.; Naismith, J. H.; Lindqvist, Y.; Gray, D. W.; Schneider, G. ACS Chem. Biol. 2013, 8, 2518.

    50. [50]

      Lai, C. Y.; Cronan, J. E. J. Bacteriol. 2004, 186, 1869.

    51. [51]

      Sohn, M.-J.; Zheng, C.-J.; Kim, W.-G. J. Antibiot. 2008, 61, 687.

    52. [52]

      Wickramasinghe, S. R.; Inglis, K. A.; Urch, J. E.; Muller, S.; van Aalten, D. M.; Fairlamb, A. H. Biochem. J. 2006, 393, 447.

    53. [53]

      Tasdemir, D.; Lack, G.; Brun, R.; Rüedi, P.; Scapozza, L.; Perozzo, R. J. Med. Chem. 2006, 49, 3345.

    54. [54]

      Zhang, F.; Luo, S. Y.; Ye, Y. B.; Zhao, W. H.; Sun, X. G.; Wang, Z. Q.; Li, R.; Sun, Y. H.; Tian, W. X.; Zhang, Y. X. Biotechnol. Appl. Biochem. 2008, 51, 73.

    55. [55]

      Zeng, D.; Zhao, J.; Chung, H. S.; Guan, Z.; Raetz, C. R.; Zhou, P. J. Biol. Chem. 2013, 288, 5475.

    56. [56]

      Swarnamukhi, P. L.; Sharma, S. K.; Bajaj, P.; Surolia, N.; Surolia, A.; Suguna, K. FEBS Lett. 2006, 580, 2653.

    57. [57]

      Zhang, L.; Xiao, J.; Xu, J.; Fu, T.; Cao, Z.; Zhu, L.; Chen, H. Z.; Shen, X.; Jiang, H.; Zhang, L. Cell Res. 2016, 26, 1330.

    58. [58]

      Shen, S.; Hang, X.; Zhuang, J.; Zhang, L.; Bi, H.; Zhang, L. Int. J. Biol. Macromol. 2019, 128, 5.

    59. [59]

      Dodge, G. J.; Patel, A.; Jaremko, K. L.; McCammon, J. A.; Smith, J. L.; Burkart, M. D. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 6775.

    60. [60]

      Moynie, L.; Leckie, S. M.; McMahon, S. A.; Duthie, F. G.; Koehnke, A.; Taylor, J. W.; Alphey, M. S.; Brenk, R.; Smith, A. D.; Naismith, J. H. J. Mol. Biol. 2013, 425, 365.

    61. [61]

      Heath, R. J.; Rock, C. O. J. Biol. Chem. 1996, 271, 27795.

    62. [62]

      Nguyen, C.; Haushalter, R. W.; Lee, D. J.; Markwick, P. R.; Bruegger, J.; Caldara-Festin, G.; Finzel, K.; Jackson, D. R.; Ishikawa, F.; O'Dowd, B.; McCammon, J. A.; Opella, S. J.; Tsai, S. C.; Burkart, M. D. Nature 2014, 505, 427.

    63. [63]

      Bi, H.; Zhu, L.; Jia, J.; Zeng, L.; Cronan, J. E. Cell Chem. Biol. 2016, 23, 1480.

    64. [64]

      Wang, H.; Cronan, J. E. J. Biol. Chem. 2004, 279, 34489.

    65. [65]

      Bi, H.; Wang, H.; Cronan, J. E. Chem. Biol. 2013, 20, 1157.

    66. [66]

      Marrakchi, H.; Choi, K. H.; Rock, C. O. J. Biol. Chem. 2002, 277, 44809.

    67. [67]

      Aguilar, P. S.; Cronan, J. E.; de Mendoza, D. J. Bacteriol. 1998, 180, 2194.

    68. [68]

      Sharma, S. K.; Kapoor, M.; Ramya, T. N.; Kumar, S.; Kumar, G.; Modak, R.; Sharma, S.; Surolia, N.; Surolia, A. J. Biol. Chem. 2003, 278, 45661.

    69. [69]

      Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.; Jiang, H. J. Biol. Chem. 2008, 283, 5370.

    70. [70]

      He, L.; Zhang, L.; Liu, X.; Li, X.; Zheng, M.; Li, H.; Yu, K.; Chen, K.; Shen, X.; Jiang, H.; Liu, H. J. Med. Chem. 2009, 52, 2465.

    71. [71]

      Zhang, L.; Kong, Y.; Wu, D.; Zhang, H.; Wu, J.; Chen, J.; Ding, J.; Hu, L.; Jiang, H.; Shen, X. Protein Sci. 2008, 17, 1971.

    72. [72]

      Chen, J.; Zhang, L.; Zhang, Y.; Zhang, H.; Du, J.; Ding, J.; Guo, Y.; Jiang, H.; Shen, X. BMC Microbiol. 2009, 9, 91.

    73. [73]

      McGillick, B. E.; Kumaran, D.; Vieni, C.; Swaminathan, S. Biochemistry 2016, 55, 1091.

    74. [74]

      Leesong, M.; Henderson, B. S.; Gillig, J. R.; Schwab, J. M.; Smith, J. L. Structure 1996, 4, 253.

    75. [75]

      Moynie, L.; Hope, A. G.; Finzel, K.; Schmidberger, J.; Leckie, S. M.; Schneider, G.; Burkart, M. D.; Smith, A. D.; Gray, D. W.; Naismith, J. H. J. Mol. Biol. 2016, 428, 108.

    76. [76]

      Kim, H. T.; Kim, S.; Na, B. K.; Chung, J.; Hwang, E.; Hwang, K. Y. Biochem. Biophys. Res. Commun. 2017, 493, 28.

    77. [77]

      Rafi, S.; Novichenok, P.; Kolappan, S.; Stratton, C. F.; Rawat, R.; Kisker, C.; Simmerling, C.; Tonge, P. J. J. Biol. Chem. 2006, 281, 39285.

    78. [78]

      Kim, K. H.; Ha, B. H.; Kim, S. J.; Hong, S. K.; Hwang, K. Y.; Kim, E. E. J. Mol. Biol. 2011, 406, 403.

    79. [79]

      Neckles, C.; Pschibul, A.; Lai, C. T.; Hirschbeck, M.; Kuper, J.; Davoodi, S.; Zou, J.; Liu, N.; Pan, P.; Shah, S.; Daryaee, F.; Bommineni, G. R.; Lai, C.; Simmerling, C.; Kisker, C.; Tonge, P. J. Biochemistry 2016, 55, 2992.

    80. [80]

      Li, H.; Zhang, X.; Bi, L.; He, J.; Jiang, T. PLoS One 2011, 6, e26743.

    81. [81]

      Kim, S. H.; Khan, R.; Choi, K.; Lee, S. W.; Rhee, S. FEBS J. 2020, 281, 4710.

    82. [82]

      Saito, J.; Yamada, M.; Watanabe, T.; Iida, M.; Kitagawa, H.; Takahata, S.; Ozawa, T.; Takeuchi, Y.; Ohsawa, F. Protein Sci. 2008, 17, 691.

    83. [83]

      Qiu, X.; Abdel-Meguid, S. S.; Janson, C. A.; Court, R. I.; Smyth, M. G.; Payne, D. J. Protein Sci. 1999, 8, 2529.

    84. [84]

      Miller, W. H.; Seefeld, M. A.; Newlander, K. A.; Uzinskas, I. N.; Burgess, W. J.; Heerding, D. A.; Yuan, C. C. K.; Head, M. S.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; Pearson, S. C.; Berry, V.; DeWolf, W. E.; Keller, P. M.; Polizzi, B. J.; Qiu, X.; Janson, C. A.; Huffman, W. F. J. Med. Chem. 2002, 45, 3246.

    85. [85]

      Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; DeWolf, W. E.; Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson, C. A.; Keller, P. M.; Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson, S.; Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis, N. G.; Huffman, W. F. J. Med. Chem. 2003, 46, 1627.

    86. [86]

      Heerding, D. A.; Chan, G.; DeWolf, W. E.; Fosberry, A. P.; Janson, C. A.; Jaworski, D. D.; McManus, E.; Miller, W. H.; Moore, T. D.; Payne, D. J.; Qiu, X.; Rittenhouse, S. F.; Slater-Radosti, C.; Smith, W.; Takata, D. T.; Vaidya, K. S.; Yuan, C. C. K.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2061.

    87. [87]

      Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; DeWolf, W. E.; Keller, P. M.; Qiu, X.; Janson, C. A.; Vaidya, K.; Fosberry, A. P.; Smyth, M. G.; Jaworski, D. D.; Slater-Radosti, C.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2241.

    88. [88]

      Ramnauth, J.; Surman, M. D.; Sampson, P. B.; Forrest, B.; Wilson, J.; Freeman, E.; Manning, D. D.; Martin, F.; Toro, A.; Domagala, M.; Awrey, D. E.; Bardouniotis, E.; Kaplan, N.; Berman, J.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 5359.

    89. [89]

      Sampson, P. B.; Picard, C.; Handerson, S.; McGrath, T. E.; Domagala, M.; Leeson, A.; Romanov, V.; Awrey, D. E.; Thambipillai, D.; Bardouniotis, E.; Kaplan, N.; Berman, J. M.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 5355.

    90. [90]

      Fage, C. D.; Lathouwers, T.; Vanmeert, M.; Gao, L. J.; Vrancken, K.; Lammens, E. M.; Weir, A. N. M.; Degroote, R.; Cuppens, H.; Kosol, S.; Simpson, T. J.; Crump, M. P.; Willis, C. L.; Herdewijn, P.; Lescrinier, E.; Lavigne, R.; Anne, J.; Masschelein, J. Angew. Chem. Int. Ed. 2020, 59, 10549.

    91. [91]

      Karlowsky, J. A.; Laing, N. M.; Baudry, T.; Kaplan, N.; Vaughan, D.; Hoban, D. J.; Zhanel, G. G. Antimicrob. Agents Chemother. 2007, 51, 1580.

    92. [92]

      Hafkin, B.; Kaplan, N.; Murphy, B. Antimicrob. Agents Chemother. 2015, 60, 1695.

    93. [93]

      Parker, E. N.; Drown, B. S.; Geddes, E. J.; Lee, H. Y.; Ismail, N.; Lau, G. W.; Hergenrother, P. J. Nat. Microbiol. 2020, 5, 67.

    94. [94]

      Ozawa, T.; Kitagawa, H.; Yamamoto, Y.; Takahata, S.; Iida, M.; Osaki, Y.; Yamada, K. Bioorg. Med. Chem. Lett. 2007, 15, 7325.

    95. [95]

      Jones, J. A.; Prior, A. M.; Marreddy, R. K. R.; Wahrmund, R. D.; Hurdle, J. G.; Sun, D.; Hevener, K. E. ACS Chem. Biol. 2019, 14, 1528.

    96. [96]

      Yu, Y. H.; Ma, J. R.; Wang, H. H. J. Microbiol. 2016, 4, 76 (in Chinese).

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(133)
  • Abstract views(5524)
  • HTML views(1499)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return