Citation: Liang Huan, Gou Along, Gao Zhupeng, Lei Linsheng, Wang Bowen, Yu Lan, Xu Xuetao, Wang Shaohua. A New Strategy for the Synthesis of Tertiary Amides via a Copper-Catalyzed Decyanation Reaction of N, N-Disubstituted 2-Aminomalononitriles[J]. Acta Chimica Sinica, ;2020, 78(10): 1064-1068. doi: 10.6023/A20070296 shu

A New Strategy for the Synthesis of Tertiary Amides via a Copper-Catalyzed Decyanation Reaction of N, N-Disubstituted 2-Aminomalononitriles

  • Corresponding author: Yu Lan, yul@lzu.edu.cn Wang Shaohua, wangshh@lzu.edu.cn
  • Received Date: 7 July 2020
    Available Online: 8 September 2020

    Fund Project: Chinese patent pending 202010648789.7the National Natural Science Foundation of China 21472077Department of Education of Guangdong Province 2017KTSCX185Department of Education of Guangdong Province 2016KCXTD005Department of Education of Guangdong Province 2017KSYS010Department of Education of Guangdong Province 2019KZDXM035Project supported by the National Natural Science Foundation of China (Nos. 21472077, 21772071) and Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005, 2019KZDXM035). Chinese patent pending (No. 202010648789.7)the National Natural Science Foundation of China 21772071

Figures(5)

  • The development of new synthetic methodology and reagent is always a hot topic in organic synthesis community. Among the strategies used, chemical property investigation of synthetic intermediates with multifunctional groups represents a direct and efficient way. In this paper, as a systematic continuation of α-aminomalononitrile based synthetic application studies, α-aminomalononitrile has been developed for the first time as a surrogate for carbamoyl anions and applied to the synthesis of tertiary amides via a copper-catalyzed decyanation reaction. This strategy features simple reaction conditions, scalability, and wide substrate scope. This work not only further enriches the reaction model of aminonitrile compounds, but also provides an alternative synthetic strategy for the synthesis of substituted amides from simple formamides. In this process, the substrates could be readily synthesized through the nucleophilic addition or substitution reaction of α-aminomalononitriles, and they would be converted to corresponding tertiary amide in the presence of CuF2 in DMSO. As an example, the formal hydrocarbamoylation reaction of unsaturated bonds could be achieved. A general procedure for the strategy is as follows:α-aminomalononitrile derived from formamide is used to undergo nucleophilic addition or substitution reaction with electrophilic reagents. Next, the two cyano groups of the synthesized substrates could be removed under the catalysis of CuF2 to form a C=O double bond in situ, thereby achieving the synthesis of corresponding tertiary amide. During the reaction, the α-aminomalononitrile substrate (0.4 mmol), CuF2 (5 mol%), DMSO (3 mL) were placed in a sealed reaction tube at 100℃ at an argon atmosphere for about 32 hours. Then, the reaction system was washed out with ethyl acetate, and the organic phase was washed with water to remove DMSO. Next, the aqueous phase was extracted with ethyl acetate. Finally all organic phases were combined, washed once with saturated brine. After drying the organic phase over anhydrous sodium sulfate, it was concentrated by a vacuum pump. Finally, the residue was purified by flash column chromatography to give amide product.
  • 加载中
    1. [1]

    2. [2]

      (a) Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Chem. Rev. 2016, 116, 5338. (b) Zolnowska, B.; Slawinski, J.; Garbacz, K.; Jarosiewicz, M.; Kawiak, A. Int. J. Mol. Sci. 2019, 21, 210. (c) Wilhelm, E. A.; Torres, M.; Pereira, C. F.; Vogt, A. G.; Cervo, R.; Dos Santos, B. G. T.; Cargnelutti, R.; Luchese, C. Can. J. Physiol. Pharmacol. 2019, 98, 304. (d) Wilt, S. R.; Rodriguez, M.; Le, T. N.; Baltodano, E. V.; Salas, A.; Pecic, S. Chem. Biol. Drug Des. 2020, 95, 534. (e) Zheng, Q.; Peng, X.; Zhang, Y. BMC Anesthesiol. 2020, 20, 43. (f) Zhou, Y.; Gu, Z.; Liu, J.; Huang, K.; Liu, G.; Wu, J. Carbohydr. Polym. 2020, 230, 115640.

    3. [3]

      (a) Guo, X.; Facchetti, A.; Marks, T.-J. Chem. Rev. 2014, 114, 8943. (b) Jiang, G.-L.; Wang, D.-Y.; Du, H.-P.; Wu, X.; Zhang, Y.; Tan, Y.-Y.; Wu, L.; Liu, J.-G.; Zhang, X. Polymers (Basel, Switz.), 2020, 12, 413. (c) Liu, J.; Chen, T.-W.; Yang, Y. L.; Bai, Z. C.; Xia, L.-R.; Wang, M.; Lv, X.-L.; Li, L. Carbohydr. Polym. 2020, 230, 115619. (d) Materna, K. L.; Lalaoui, N.; Laureanti, J. A.; Walsh, A. P.; Rimgard, B. P.; Lomoth, R.; Thapper, A.; Ott, S.; Shaw, W. J.; Tian, H.; Hammarstrom, L. ACS Appl. Mater. Interfaces 2020, 12, 4501.

    4. [4]

      Wu, Z.; Du, Y.; Zhou, Q.; Chen, L. Pestic. Biochem. Physiol. 2020, 163, 51.  doi: 10.1016/j.pestbp.2019.10.003

    5. [5]

    6. [6]

      (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016. (c) Newton, C.-G.; Wang, S.-G.; Oliveira, C.-C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333. (e) Kalck, P.; Urrutigoïty, M. Chem. Rev. 2018, 118, 3833. (f) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.

    7. [7]

      (a) Friedman, L.; Shechter, H. Tetrahedron Lett. 1961, 2, 238. (b) Angioni, S.; Ravelli, D.; Emma, D.; Dondi, D.; Fagnoni, M.; Albini, A. Adv. Synth. Catal. 2008, 350, 2209.

    8. [8]

      Tsuji, Y.; Yoshii, S.; Ohsumi, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1987, 331, 379.  doi: 10.1016/0022-328X(87)80009-8

    9. [9]

      Kondo, T.; Okada, T.; Mitsudo, T.a. Organometallics 1999, 18, 4123.  doi: 10.1021/om990373c

    10. [10]

      Nath, D. C. D.; Fellows, C. M.; Kobayashi, T.; Hayashi, T. Aust. J. Chem. 2006, 59, 218.  doi: 10.1071/CH06010

    11. [11]

      Ko, S.; Han, H.; Chang, S. Org. Lett. 2003, 5, 2687.  doi: 10.1021/ol034862r

    12. [12]

      (a) Nakao, Y.; Idei, H.; Kanyiva, K.S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 5070. (b) Miyazaki, Y.; Yamada, Y.; Nakao, Y.; Hiyama, T. Chem. Lett. 2012, 41, 298.

    13. [13]

      Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2010, 132, 2094.  doi: 10.1021/ja910038p

    14. [14]

      (a) Kobayashi, Y.; Kamisaki, H.; Yanada, K.; Yanada, R.; Takemoto, Y. Tetrahedron Lett. 2005, 46, 7549. (b) Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc. 2011, 133, 3264. (c) Donets, P.A.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 11772. (d) Armanino, N.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 6814. (e) Correia, V. G.; Abreu, J. C.; Barata, C. A. E.; Andrade, L.H. Org. Lett. 2017, 19, 1060.

    15. [15]

      Mou, X.-Q.; Xu, L.; Wang, S.-H.; Yang, C. Tetrahedron Lett. 2015, 56, 2820.  doi: 10.1016/j.tetlet.2015.04.056

    16. [16]

      Mou, X.-Q.; Xu, Z.-L.; Xu, L.; Wang, S.-H.; Zhang, B.-H.; Zhang, D.; Wang, J.; Liu, W.T.; Bao, W. Org. Lett. 2016, 18, 4032.  doi: 10.1021/acs.orglett.6b01883

    17. [17]

      Zhang, B.-H.; Lei, L.-S.; Liu, S.-Z.; Mou, X.-Q.; Liu, W.-T.; Wang, S.-H.; Wang, J.; Bao, W.; Zhang, K. Chem. Commun. 2017, 53, 8545.  doi: 10.1039/C7CC04610C

    18. [18]

      Bao, W.; Gao, Z.-P.; Jin, D.-P.; Xue, C.-G.; Liang, H.; Lei, L.-S.; Xu, X.-T.; Zhang, K.; Wang, S.-H. Chem. Commun. 2020, 56, 7641.  doi: 10.1039/D0CC01591A

    19. [19]

      Lei, L.-S.; Xue, C.-G.; Xu, X.-T.; Jin, D.-P.; Wang, S.-H.; Bao, W.; Liang, H.; Zhang, K.; Asiri, A. M. Org. Biomol. Chem. 2019, 17, 3723.  doi: 10.1039/C9OB00510B

    20. [20]

      Lei, L.-S.; Wang, B.-W.; Jin, D.-P.; Gao, Z.-P.; Liang, H.; Wang, S.-H.; Xu, X.-T.; Zhang, K.; Zhang, X.-Y. Adv. Synth. Catal. 2020, 362, 2870.  doi: 10.1002/adsc.202000261

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(4)
  • Abstract views(742)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return