Citation: Cao Mengxuan, Dai Xiaoguang, Chen Beibei, Zhao Nana, Xu Fu-Jian. Combination of Nanomaterials and Bacteria for Tumor Treatment[J]. Acta Chimica Sinica, ;2020, 78(10): 1054-1063. doi: 10.6023/A20070295 shu

Combination of Nanomaterials and Bacteria for Tumor Treatment

  • Corresponding author: Zhao Nana, zhaonn@mail.buct.edu.cn
  • Received Date: 7 July 2020
    Available Online: 10 August 2020

    Fund Project: Beijing Outstanding Young Scientist Program BJJWZYJH01201910010024Fundamental Research Funds for the Central Universities XK1802-2Fundamental Research Funds for the Central Universities BHYC1705Athe National Key Research and Development Program of China 2016YFA0201501National Natural Science Foundation of China 51922022Project supported by the National Key Research and Development Program of China (No. 2016YFA0201501), National Natural Science Foundation of China (Nos. 51773013 and 51922022), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910010024), and Fundamental Research Funds for the Central Universities (Nos. BHYC1705A and XK1802-2)National Natural Science Foundation of China 51773013

Figures(7)

  • Nowadays malignant tumors are still one of the disastrous diseases. It is necessary to explore new strategies for the treatment of malignant tumor. Nanomaterials refer to materials with at least one dimension of the three dimensions in the nanometer range (1~100 nm). They show a wide range of applications in tumor treatment while disadvantages of low targeting efficiency, poor tumor penetration and obvious side effects still limit their applications. As a method for tumor treatment, bacterial therapy has a long history. Some facultative anaerobic and obligate anaerobic bacteria and their secretions have the characteristics of targeting hypoxic tumor tissue, strong tumor penetration and stimulating immune responses. After genetically modification or attenuation treatment, it can be used for tumor treatment. However, the safety issues and low therapeutic efficiency still needs to be solved. The combination of nanomaterials and bacteria can complement the limitation of each other, and shows great potential in tumor therapy. On one hand, bacteria could enhance the targeting efficiency of nanomaterials, and decrease the side effects. On the other hand, nanomaterials could help improve the safety and solve the problem of low therapeutic efficiency of bacterial therapy. In this review, the combination of nanomaterials and bacteria is divided into three categories based on the role of bacteria in the treatment. Firstly, the preparation of composites of nanomaterials and bacteria by chemical bonds, electrostatic interaction, and other ways to enhance tumor targeting. Secondly, bacterial enzyme could react with nanomaterials to control the release of drug. Thirdly, secretions of bacteria after plasmids were introduced and outer membrane vesicles secreted by bacteria could be combined with nanomaterials for anti-tumor therapy. The mechanisms of the combination therapy are also discussed. Finally, we summarized and discussed the current challenges, especially the safety of the combination therapy. The prospect of the combination of nanomaterials and bacterial for tumor treatment is also proposed.
  • 加载中
    1. [1]

      Zhao, N.; Yan, L..; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. J. Chem. Rev. 2019, 119, 1666.

    2. [2]

      Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Chem. Rev. 2015, 1195, 327.

    3. [3]

      Wang, Y. M.; Zhu, D. M.; Yang, Y.; Zhang, K.; Zhang, X. K.; Lv, M. S.; Hu, L.; Ding, S. J.; Wang, L. Acta Chim. Sinica 2020, 78, 76.
       

    4. [4]

      Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156.
       

    5. [5]

      Lin, H.; Chen, Y.; Shi, J. L. Chem. Soc. Rev. 2018, 47, 1938.  doi: 10.1039/C7CS00471K

    6. [6]

      Li, J. C.; Pu, K. Y. Chem. Soc. Rev. 2019, 48, 38.  doi: 10.1039/C8CS00001H

    7. [7]

      Wong, P. T.; Choi, S. K. Chem. Rev. 2015, 115, 3388.  doi: 10.1021/cr5004634

    8. [8]

      Dai, Y. L.; Xu, C.; Sun, X. L.; Chen X. Y. Chem. Soc. Rev. 2017, 46, 3830.

    9. [9]

      Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Chem. Rev. 2016, 116, 2826.  doi: 10.1021/acs.chemrev.5b00148

    10. [10]

      Maeda, H. Bioconjugate Chem. 2010, 21, 797.  doi: 10.1021/bc100070g

    11. [11]

      Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047.
       

    12. [12]

      Zhang, L. W.; Qian, M.; Wang, J. Y. Acta Chim. Sinica 2017, 75, 770.
       

    13. [13]

      Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Chem. Soc. Rev. 2019, 48, 3771.  doi: 10.1039/C8CS00896E

    14. [14]

      Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393.  doi: 10.1038/nrc3064

    15. [15]

      (a) Patyar, S.; Joshi, R.; Byrav, D. S. P.; Prakash, A.; Medhi, B.; Das, B. K. J. Biomed. Sci. 2010, 17, 21. (b) Malmgren, R. A.; Flanigan, C. C. Cancer Res. 1955, 15, 473. (c) Zhao, M.; Yang, M.; Li, X. M.; Jiang, P.; Baranov, E.; Li, S.; Xu, M. X.; Penman, S.; Hoffman, R. M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 755. (d) Sedighi, M.; Bialvaei, A. Z.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Cancer Med. 2019, 8, 3167.

    16. [16]

      Chen, F. M.; Li, N.; Xing, J. H.; Zheng, M. B.; Zhong, Y.; Luo, Y. M.; Ma, A. Q.; Cui, L.; Cai, L. T. Prog. Biochem. Biophys. 2019, 46, 1162.

    17. [17]

      Liu, S. C.; Minton, N. P.; Giaccia, A. J.; Brown, J. M. Gene Ther. 2002, 9, 291.  doi: 10.1038/sj.gt.3301659

    18. [18]

      Yu, Y. A.; Shabahang, S.; Timiryasova, T. M.; Zhang, Q.; Beltz, R.; Gentschev, I.; Goebel, W.; Szalay, A. A. Nat. Biotechnol. 2004, 22, 313.  doi: 10.1038/nbt937

    19. [19]

      Broadway, K. M.; Suh, S.; Behkam, B.; Scharf, B. E. J. Biotechnol. 2017, 251, 76.

    20. [20]

      Toso, J. F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F.; Freezer, L. J.; Morton, K. E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S. A. J. Clin. Oncol. 2002, 20, 142.  doi: 10.1200/JCO.2002.20.1.142

    21. [21]

      Charbonneau, M. R.; Isabella, V. M.; Li, N.; Kurtz, C. B. Nat. Commun. 2020, 11, 1738.  doi: 10.1038/s41467-020-15508-1

    22. [22]

      Afkhami-Poostchi, A.; Mashreghi, M.; Iranshahi, M.; Matin, M. M. Int. J. Pharm. 2020, 579, 119159.  doi: 10.1016/j.ijpharm.2020.119159

    23. [23]

      Hayashi, K.; Zhao, M.; Yamauchi, K.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Hoffman, R. B. J. Cell. Biochem. 2009, 106, 992.  doi: 10.1002/jcb.22078

    24. [24]

      Zheng, J. H.; Nguyen, V. H.; Jiang, S. N.; Park, S. H.; Tan, W. Z.; Hong, S. H.; Shin, M. G.; Chung, I. J.; Hong, Y.; Bom, H. S.; Choy, H. E.; Lee, S. E.; Rhee, J. H.; Min, J. J. Sci. Transl. Med. 2017, 9, eaak9537.

    25. [25]

      Yang, X. G.; Yang, Z. Q.; Sun, Z. G. Med. Recapitulate 2012, 18, 2001.

    26. [26]

      Oelschlaeger, T. A. Bioengineered 2010, 1, 146.  doi: 10.4161/bbug.1.2.11248

    27. [27]

      Felfoul, O.; Mohammadi, M.; Taherkhani, S.; Lanauze, D. D.; Xu, Z. Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D. Martel, S. Nat. Nanotechnol. 2016, 11, 941.  doi: 10.1038/nnano.2016.137

    28. [28]

      Chen, F. M.; Zang, Z. S.; Chen, Z.; Cui, L.; Chang, Z. G.; Ma, A. Q.; Yin, T.; Liang, R. J.; Han, Y. T.; Wu, Z. H.; Zheng, M. B.; Liu, C. L.; Cai, L. T. Biomaterials 2019, 214, 119226.  doi: 10.1016/j.biomaterials.2019.119226

    29. [29]

      Bazylinski, D. A.; Williams, T. J.; Lefe`vre, C. T.; Berg, R. J.; Zhang, C. L.; Bowser, S. S.; Dean, A. J.; Beveridge, T. J. Int. J. Syst. Evol. Microbiol. 2013, 63, 801.  doi: 10.1099/ijs.0.038927-0

    30. [30]

      Xie, S. Z.; Zhao, L.; Song, X. J.; Tang, M. S.; Mo, C. F.; Li, X. H. J. Controlled Release 2017, 268, 390.  doi: 10.1016/j.jconrel.2017.10.041

    31. [31]

      Luo, Y.; Xu, D.; Gao, X.; Xiong, J.; Jiang, B. L.; Zhang, Y.; Wang, Y. T.; Tang, Y.; Chen, C.; Qiao, H.; Li, H. N.; Zou, J. Z. Biochem. Biophys. Res. Commun. 2019, 514, 1147.  doi: 10.1016/j.bbrc.2019.05.074

    32. [32]

      Chen, Q. W.; Liu, X. H.; Fan, J. X.; Peng, S. Y.; Wang, J. W.; Wang, X. N.; Zhang, C.; Liu, C. J.; Zhang, X. Z. Adv. Funct. Mater. 2020, 30, 1909806.  doi: 10.1002/adfm.201909806

    33. [33]

      Wu, M.; Wu, W. B.; Duan, Y. K.; Li, X. Q.; Qi, G. B.; Liu, B. Chem. Mater. 2019, 31, 7212.  doi: 10.1021/acs.chemmater.9b01518

    34. [34]

      Hu, Q. L.; Wu, M.; Fang, C.; Cheng, C. Y.; Zhao, M. M.; Fang, W. H.; Chu, P. K.; Ping, Y.; Tang, G. P. Nano Lett. 2015, 15, 2732.  doi: 10.1021/acs.nanolett.5b00570

    35. [35]

      Chen, J.; Shen, C. Q.; Zheng, C. H.; Li, Y. W.; Lü, J. G.; Zhang, W. N.; Zhou, Y. J.; Zhu, J. Acta Chim. Sinica 2007, 65, 547.
       

    36. [36]

      Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Nano Lett. 2016, 16, 3493.  doi: 10.1021/acs.nanolett.6b00262

    37. [37]

      Hyre, D. E.; Trong, I. L.; Merritt, E. A.; Eccleston, J. F.; Green, N. M.; Stenkamp, R. E.; Stayton, P. S. Protein Sci. 2006, 15, 459.  doi: 10.1110/ps.051970306

    38. [38]

      Suh, S. B.; Jo, A.; Traore, M. A.; Zhan, Y.; Coutermarsh-Ott, S. L.; Ringel-Scaia, V. M.; Allen, I. C.; Davis, R. M.; Behkam, B. Adv. Sci. 2019, 6, 1801309.  doi: 10.1002/advs.201801309

    39. [39]

      Uthaman, S.; Zheng, S. H.; Han, J.; Choi, Y. J.; Cho, S.; Nguyen, V. D.; Park, J. O.; Park, S. H.; Min, J. J.; Park, S.; Park, I. K. Adv. Healthcare Mater. 2016, 5, 288.  doi: 10.1002/adhm.201500556

    40. [40]

      Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. ACS Nano 2018, 12, 5995.  doi: 10.1021/acsnano.8b02235

    41. [41]

      Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.; Huang, C. C.; Li, W. M.; Sunc, C. K.; Yeh, C. S. Chem. Commun. 2008, 37, 4430.

    42. [42]

      Liu, Y.; Zhou, M.; Luo, D.; Wang, L. J.; Hong, Y. K.; Yang, Y. P.; Sha, Y. L. Biochem. Biophys. Res. Commun. 2012, 425, 769.  doi: 10.1016/j.bbrc.2012.07.150

    43. [43]

      Wang, Y.; Zhou, Z. X.; Chen, W. F.; Qin, M.; Zhang, Z. R.; Gong, T.; Sun, X. J. Controlled Release 2018, 280, 39.  doi: 10.1016/j.jconrel.2018.04.046

    44. [44]

      Marietta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok, J. S. Biochemistry 1988, 27, 8706.  doi: 10.1021/bi00424a003

    45. [45]

      Chen, L. J.; He, Q. J.; Lei, M. Y.; Xiong, L. W.; Shi, K.; Tan, L. W.; Jin, Z. K.; Wang, T. F.; Qian, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 36473.  doi: 10.1021/acsami.7b11325

    46. [46]

      Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Nat. Commun 2018, 9, 1680.  doi: 10.1038/s41467-018-03233-9

    47. [47]

      Wang, S. B.; Liu, X. H.; Li, B.; Fan, J. X.; Ye, J. J.; Cheng, H.; Zhang, X. Z. Adv. Funct. Mater. 2019, 29, 1904093.  doi: 10.1002/adfm.201904093

    48. [48]

      Xiong, M. H.; Bao, Y.; Du, X. J.; Tan, Z. B.; Jiang, Q.; Wang, H. X.; Zhu, Y. H.; Wang, J. ACS Nano 2013, 7, 10636.  doi: 10.1021/nn403146t

    49. [49]

      Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.; Singh, A. V.; Sitti, M. Adv. Drug Delivery Rev. 2016, 106, 27.  doi: 10.1016/j.addr.2016.09.007

    50. [50]

      Gao, X. H.; Weng, M. L.; Cao, H.; Li, Y. Q.; Li, M. G. Acta Chim. Sinica 2006, 64, 1163.
       

    51. [51]

      Toyofuku, M.; Nomura, N.; Eberl, L. Nat. Rev. Microbiol. 2019, 17, 13.  doi: 10.1038/s41579-018-0112-2

    52. [52]

      Yi, J.; Liu, Q.; Kong, Q. K. Acta Microbiol. Sin. 2016, 56, 911.

    53. [53]

      Fan, J. X.; Peng, M. Y.; Wang, H.; Zheng, H. R.; Liu, Z. L.; Li, C. X.; Wang, X. N.; Liu, X. H.; Cheng, S. X.; Zhang, X. Z. Adv. Mater. 2019, 31, 1808278.  doi: 10.1002/adma.201808278

    54. [54]

      Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Nano Lett. 2018, 18, 2373.  doi: 10.1021/acs.nanolett.7b05323

    55. [55]

      Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang L. F. Nano Lett. 2015, 15, 1403.  doi: 10.1021/nl504798g

    56. [56]

      Huang, Y. K.; Beringhs, A. O.; Chen, Q.; Song, D. H.; Chen, W.; Lu, X. L.; Fan, T. H.; Nieh, M. P.; Lei, L. ACS Appl. Bio Mater. 2019, 2, 5608.  doi: 10.1021/acsabm.9b00690

    57. [57]

      Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. ACS Nano 2014, 8, 1525.  doi: 10.1021/nn405724x

    58. [58]

      Kim, O. Y.; Dinh, N. T. H.; Park, H. T.; Choi, S. J.; Hong, K.; Gho, Y. S. Biomaterials 2017, 113, 68.  doi: 10.1016/j.biomaterials.2016.10.037

    59. [59]

      Huang, W. W.; Shu, C. Y.; Hua, L. Q.; Zhao, Y. L.; Xie, H. H.; Qi, J. L.; Gao, F. L.; Gao, R. Y.; Chen, Y. J.; Zhang, Q. S.; Li, W. R.; Yuan, M. C.; Ye, C.; Ma, Y. B. Acta Biomater. 2020, 108, 300.  doi: 10.1016/j.actbio.2020.03.030

    60. [60]

      Kuerbana, K.; Gao, X. W.; Zhang, H.; Liu, J. Y.; Dong, M. X.; Wu, L. N.; Ye, R. H.; Feng, M. Q.; Ye, L. Acta Pharm. Sin. B 2020, 10, 1534.  doi: 10.1016/j.apsb.2020.02.002

    61. [61]

      Li, M.; Li, S. Y.; Zhou, H.; Tang, X. F.; Wu, Y.; Jiang, W.; Tian, Z. G.; Zhou, X. C.; Yang, X. Z.; Wang, Y. C. Nat. Commun. 2020, 11, 1126.  doi: 10.1038/s41467-020-14963-0

    62. [62]

      Chen, Q.; Bai, H. Z.; Wu, W. T.; Huang, G. J.; Li, Y.; Wu, M.; Tang, G. P.; Ping, Y. Nano Lett. 2020, 20, 11.  doi: 10.1021/acs.nanolett.9b02182

    63. [63]

      Chen, Q.; Huang, G. J.; Wu, W. T.; Wang, J. W.; Hu, J. W.; Mao, J. M.; Chu, P. K.; Bai, H. Z.; Tang, G. P. Adv. Mater. 2020, 32, 1908185.  doi: 10.1002/adma.201908185

    64. [64]

      Liu, Y.; Hong, L.; Yu, L. S.; Jiang, H. D.; Chen, J. Z.; Meng, Q.; Chen, S. Q.; Zeng, S. Acta Pharm. Sin. 2011, 46, 19.

    65. [65]

      Sevastre, A. S.; Horescu, C.; Baloi, S. C.; Cioc, C. E.; Vatu, B. I.; Tuta, C.; Artene, S. A.; Danciulescu, M. M.; Tudorache, S.; Dricu, A. Coatings 2019, 9, 628.  doi: 10.3390/coatings9100628

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(170)
  • Abstract views(4417)
  • HTML views(2063)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return