Citation: Cao Mengxuan, Dai Xiaoguang, Chen Beibei, Zhao Nana, Xu Fu-Jian. Combination of Nanomaterials and Bacteria for Tumor Treatment[J]. Acta Chimica Sinica, ;2020, 78(10): 1054-1063. doi: 10.6023/A20070295 shu

Combination of Nanomaterials and Bacteria for Tumor Treatment

  • Corresponding author: Zhao Nana, zhaonn@mail.buct.edu.cn
  • Received Date: 7 July 2020
    Available Online: 10 August 2020

    Fund Project: Beijing Outstanding Young Scientist Program BJJWZYJH01201910010024Fundamental Research Funds for the Central Universities XK1802-2Fundamental Research Funds for the Central Universities BHYC1705Athe National Key Research and Development Program of China 2016YFA0201501National Natural Science Foundation of China 51922022Project supported by the National Key Research and Development Program of China (No. 2016YFA0201501), National Natural Science Foundation of China (Nos. 51773013 and 51922022), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910010024), and Fundamental Research Funds for the Central Universities (Nos. BHYC1705A and XK1802-2)National Natural Science Foundation of China 51773013

Figures(7)

  • Nowadays malignant tumors are still one of the disastrous diseases. It is necessary to explore new strategies for the treatment of malignant tumor. Nanomaterials refer to materials with at least one dimension of the three dimensions in the nanometer range (1~100 nm). They show a wide range of applications in tumor treatment while disadvantages of low targeting efficiency, poor tumor penetration and obvious side effects still limit their applications. As a method for tumor treatment, bacterial therapy has a long history. Some facultative anaerobic and obligate anaerobic bacteria and their secretions have the characteristics of targeting hypoxic tumor tissue, strong tumor penetration and stimulating immune responses. After genetically modification or attenuation treatment, it can be used for tumor treatment. However, the safety issues and low therapeutic efficiency still needs to be solved. The combination of nanomaterials and bacteria can complement the limitation of each other, and shows great potential in tumor therapy. On one hand, bacteria could enhance the targeting efficiency of nanomaterials, and decrease the side effects. On the other hand, nanomaterials could help improve the safety and solve the problem of low therapeutic efficiency of bacterial therapy. In this review, the combination of nanomaterials and bacteria is divided into three categories based on the role of bacteria in the treatment. Firstly, the preparation of composites of nanomaterials and bacteria by chemical bonds, electrostatic interaction, and other ways to enhance tumor targeting. Secondly, bacterial enzyme could react with nanomaterials to control the release of drug. Thirdly, secretions of bacteria after plasmids were introduced and outer membrane vesicles secreted by bacteria could be combined with nanomaterials for anti-tumor therapy. The mechanisms of the combination therapy are also discussed. Finally, we summarized and discussed the current challenges, especially the safety of the combination therapy. The prospect of the combination of nanomaterials and bacterial for tumor treatment is also proposed.
  • 加载中
    1. [1]

      Zhao, N.; Yan, L..; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. J. Chem. Rev. 2019, 119, 1666.

    2. [2]

      Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Chem. Rev. 2015, 1195, 327.

    3. [3]

      Wang, Y. M.; Zhu, D. M.; Yang, Y.; Zhang, K.; Zhang, X. K.; Lv, M. S.; Hu, L.; Ding, S. J.; Wang, L. Acta Chim. Sinica 2020, 78, 76.
       

    4. [4]

      Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156.
       

    5. [5]

      Lin, H.; Chen, Y.; Shi, J. L. Chem. Soc. Rev. 2018, 47, 1938.  doi: 10.1039/C7CS00471K

    6. [6]

      Li, J. C.; Pu, K. Y. Chem. Soc. Rev. 2019, 48, 38.  doi: 10.1039/C8CS00001H

    7. [7]

      Wong, P. T.; Choi, S. K. Chem. Rev. 2015, 115, 3388.  doi: 10.1021/cr5004634

    8. [8]

      Dai, Y. L.; Xu, C.; Sun, X. L.; Chen X. Y. Chem. Soc. Rev. 2017, 46, 3830.

    9. [9]

      Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Chem. Rev. 2016, 116, 2826.  doi: 10.1021/acs.chemrev.5b00148

    10. [10]

      Maeda, H. Bioconjugate Chem. 2010, 21, 797.  doi: 10.1021/bc100070g

    11. [11]

      Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047.
       

    12. [12]

      Zhang, L. W.; Qian, M.; Wang, J. Y. Acta Chim. Sinica 2017, 75, 770.
       

    13. [13]

      Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Chem. Soc. Rev. 2019, 48, 3771.  doi: 10.1039/C8CS00896E

    14. [14]

      Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393.  doi: 10.1038/nrc3064

    15. [15]

      (a) Patyar, S.; Joshi, R.; Byrav, D. S. P.; Prakash, A.; Medhi, B.; Das, B. K. J. Biomed. Sci. 2010, 17, 21. (b) Malmgren, R. A.; Flanigan, C. C. Cancer Res. 1955, 15, 473. (c) Zhao, M.; Yang, M.; Li, X. M.; Jiang, P.; Baranov, E.; Li, S.; Xu, M. X.; Penman, S.; Hoffman, R. M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 755. (d) Sedighi, M.; Bialvaei, A. Z.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Cancer Med. 2019, 8, 3167.

    16. [16]

      Chen, F. M.; Li, N.; Xing, J. H.; Zheng, M. B.; Zhong, Y.; Luo, Y. M.; Ma, A. Q.; Cui, L.; Cai, L. T. Prog. Biochem. Biophys. 2019, 46, 1162.

    17. [17]

      Liu, S. C.; Minton, N. P.; Giaccia, A. J.; Brown, J. M. Gene Ther. 2002, 9, 291.  doi: 10.1038/sj.gt.3301659

    18. [18]

      Yu, Y. A.; Shabahang, S.; Timiryasova, T. M.; Zhang, Q.; Beltz, R.; Gentschev, I.; Goebel, W.; Szalay, A. A. Nat. Biotechnol. 2004, 22, 313.  doi: 10.1038/nbt937

    19. [19]

      Broadway, K. M.; Suh, S.; Behkam, B.; Scharf, B. E. J. Biotechnol. 2017, 251, 76.

    20. [20]

      Toso, J. F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F.; Freezer, L. J.; Morton, K. E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S. A. J. Clin. Oncol. 2002, 20, 142.  doi: 10.1200/JCO.2002.20.1.142

    21. [21]

      Charbonneau, M. R.; Isabella, V. M.; Li, N.; Kurtz, C. B. Nat. Commun. 2020, 11, 1738.  doi: 10.1038/s41467-020-15508-1

    22. [22]

      Afkhami-Poostchi, A.; Mashreghi, M.; Iranshahi, M.; Matin, M. M. Int. J. Pharm. 2020, 579, 119159.  doi: 10.1016/j.ijpharm.2020.119159

    23. [23]

      Hayashi, K.; Zhao, M.; Yamauchi, K.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Hoffman, R. B. J. Cell. Biochem. 2009, 106, 992.  doi: 10.1002/jcb.22078

    24. [24]

      Zheng, J. H.; Nguyen, V. H.; Jiang, S. N.; Park, S. H.; Tan, W. Z.; Hong, S. H.; Shin, M. G.; Chung, I. J.; Hong, Y.; Bom, H. S.; Choy, H. E.; Lee, S. E.; Rhee, J. H.; Min, J. J. Sci. Transl. Med. 2017, 9, eaak9537.

    25. [25]

      Yang, X. G.; Yang, Z. Q.; Sun, Z. G. Med. Recapitulate 2012, 18, 2001.

    26. [26]

      Oelschlaeger, T. A. Bioengineered 2010, 1, 146.  doi: 10.4161/bbug.1.2.11248

    27. [27]

      Felfoul, O.; Mohammadi, M.; Taherkhani, S.; Lanauze, D. D.; Xu, Z. Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D. Martel, S. Nat. Nanotechnol. 2016, 11, 941.  doi: 10.1038/nnano.2016.137

    28. [28]

      Chen, F. M.; Zang, Z. S.; Chen, Z.; Cui, L.; Chang, Z. G.; Ma, A. Q.; Yin, T.; Liang, R. J.; Han, Y. T.; Wu, Z. H.; Zheng, M. B.; Liu, C. L.; Cai, L. T. Biomaterials 2019, 214, 119226.  doi: 10.1016/j.biomaterials.2019.119226

    29. [29]

      Bazylinski, D. A.; Williams, T. J.; Lefe`vre, C. T.; Berg, R. J.; Zhang, C. L.; Bowser, S. S.; Dean, A. J.; Beveridge, T. J. Int. J. Syst. Evol. Microbiol. 2013, 63, 801.  doi: 10.1099/ijs.0.038927-0

    30. [30]

      Xie, S. Z.; Zhao, L.; Song, X. J.; Tang, M. S.; Mo, C. F.; Li, X. H. J. Controlled Release 2017, 268, 390.  doi: 10.1016/j.jconrel.2017.10.041

    31. [31]

      Luo, Y.; Xu, D.; Gao, X.; Xiong, J.; Jiang, B. L.; Zhang, Y.; Wang, Y. T.; Tang, Y.; Chen, C.; Qiao, H.; Li, H. N.; Zou, J. Z. Biochem. Biophys. Res. Commun. 2019, 514, 1147.  doi: 10.1016/j.bbrc.2019.05.074

    32. [32]

      Chen, Q. W.; Liu, X. H.; Fan, J. X.; Peng, S. Y.; Wang, J. W.; Wang, X. N.; Zhang, C.; Liu, C. J.; Zhang, X. Z. Adv. Funct. Mater. 2020, 30, 1909806.  doi: 10.1002/adfm.201909806

    33. [33]

      Wu, M.; Wu, W. B.; Duan, Y. K.; Li, X. Q.; Qi, G. B.; Liu, B. Chem. Mater. 2019, 31, 7212.  doi: 10.1021/acs.chemmater.9b01518

    34. [34]

      Hu, Q. L.; Wu, M.; Fang, C.; Cheng, C. Y.; Zhao, M. M.; Fang, W. H.; Chu, P. K.; Ping, Y.; Tang, G. P. Nano Lett. 2015, 15, 2732.  doi: 10.1021/acs.nanolett.5b00570

    35. [35]

      Chen, J.; Shen, C. Q.; Zheng, C. H.; Li, Y. W.; Lü, J. G.; Zhang, W. N.; Zhou, Y. J.; Zhu, J. Acta Chim. Sinica 2007, 65, 547.
       

    36. [36]

      Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Nano Lett. 2016, 16, 3493.  doi: 10.1021/acs.nanolett.6b00262

    37. [37]

      Hyre, D. E.; Trong, I. L.; Merritt, E. A.; Eccleston, J. F.; Green, N. M.; Stenkamp, R. E.; Stayton, P. S. Protein Sci. 2006, 15, 459.  doi: 10.1110/ps.051970306

    38. [38]

      Suh, S. B.; Jo, A.; Traore, M. A.; Zhan, Y.; Coutermarsh-Ott, S. L.; Ringel-Scaia, V. M.; Allen, I. C.; Davis, R. M.; Behkam, B. Adv. Sci. 2019, 6, 1801309.  doi: 10.1002/advs.201801309

    39. [39]

      Uthaman, S.; Zheng, S. H.; Han, J.; Choi, Y. J.; Cho, S.; Nguyen, V. D.; Park, J. O.; Park, S. H.; Min, J. J.; Park, S.; Park, I. K. Adv. Healthcare Mater. 2016, 5, 288.  doi: 10.1002/adhm.201500556

    40. [40]

      Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. ACS Nano 2018, 12, 5995.  doi: 10.1021/acsnano.8b02235

    41. [41]

      Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.; Huang, C. C.; Li, W. M.; Sunc, C. K.; Yeh, C. S. Chem. Commun. 2008, 37, 4430.

    42. [42]

      Liu, Y.; Zhou, M.; Luo, D.; Wang, L. J.; Hong, Y. K.; Yang, Y. P.; Sha, Y. L. Biochem. Biophys. Res. Commun. 2012, 425, 769.  doi: 10.1016/j.bbrc.2012.07.150

    43. [43]

      Wang, Y.; Zhou, Z. X.; Chen, W. F.; Qin, M.; Zhang, Z. R.; Gong, T.; Sun, X. J. Controlled Release 2018, 280, 39.  doi: 10.1016/j.jconrel.2018.04.046

    44. [44]

      Marietta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok, J. S. Biochemistry 1988, 27, 8706.  doi: 10.1021/bi00424a003

    45. [45]

      Chen, L. J.; He, Q. J.; Lei, M. Y.; Xiong, L. W.; Shi, K.; Tan, L. W.; Jin, Z. K.; Wang, T. F.; Qian, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 36473.  doi: 10.1021/acsami.7b11325

    46. [46]

      Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Nat. Commun 2018, 9, 1680.  doi: 10.1038/s41467-018-03233-9

    47. [47]

      Wang, S. B.; Liu, X. H.; Li, B.; Fan, J. X.; Ye, J. J.; Cheng, H.; Zhang, X. Z. Adv. Funct. Mater. 2019, 29, 1904093.  doi: 10.1002/adfm.201904093

    48. [48]

      Xiong, M. H.; Bao, Y.; Du, X. J.; Tan, Z. B.; Jiang, Q.; Wang, H. X.; Zhu, Y. H.; Wang, J. ACS Nano 2013, 7, 10636.  doi: 10.1021/nn403146t

    49. [49]

      Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.; Singh, A. V.; Sitti, M. Adv. Drug Delivery Rev. 2016, 106, 27.  doi: 10.1016/j.addr.2016.09.007

    50. [50]

      Gao, X. H.; Weng, M. L.; Cao, H.; Li, Y. Q.; Li, M. G. Acta Chim. Sinica 2006, 64, 1163.
       

    51. [51]

      Toyofuku, M.; Nomura, N.; Eberl, L. Nat. Rev. Microbiol. 2019, 17, 13.  doi: 10.1038/s41579-018-0112-2

    52. [52]

      Yi, J.; Liu, Q.; Kong, Q. K. Acta Microbiol. Sin. 2016, 56, 911.

    53. [53]

      Fan, J. X.; Peng, M. Y.; Wang, H.; Zheng, H. R.; Liu, Z. L.; Li, C. X.; Wang, X. N.; Liu, X. H.; Cheng, S. X.; Zhang, X. Z. Adv. Mater. 2019, 31, 1808278.  doi: 10.1002/adma.201808278

    54. [54]

      Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Nano Lett. 2018, 18, 2373.  doi: 10.1021/acs.nanolett.7b05323

    55. [55]

      Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang L. F. Nano Lett. 2015, 15, 1403.  doi: 10.1021/nl504798g

    56. [56]

      Huang, Y. K.; Beringhs, A. O.; Chen, Q.; Song, D. H.; Chen, W.; Lu, X. L.; Fan, T. H.; Nieh, M. P.; Lei, L. ACS Appl. Bio Mater. 2019, 2, 5608.  doi: 10.1021/acsabm.9b00690

    57. [57]

      Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. ACS Nano 2014, 8, 1525.  doi: 10.1021/nn405724x

    58. [58]

      Kim, O. Y.; Dinh, N. T. H.; Park, H. T.; Choi, S. J.; Hong, K.; Gho, Y. S. Biomaterials 2017, 113, 68.  doi: 10.1016/j.biomaterials.2016.10.037

    59. [59]

      Huang, W. W.; Shu, C. Y.; Hua, L. Q.; Zhao, Y. L.; Xie, H. H.; Qi, J. L.; Gao, F. L.; Gao, R. Y.; Chen, Y. J.; Zhang, Q. S.; Li, W. R.; Yuan, M. C.; Ye, C.; Ma, Y. B. Acta Biomater. 2020, 108, 300.  doi: 10.1016/j.actbio.2020.03.030

    60. [60]

      Kuerbana, K.; Gao, X. W.; Zhang, H.; Liu, J. Y.; Dong, M. X.; Wu, L. N.; Ye, R. H.; Feng, M. Q.; Ye, L. Acta Pharm. Sin. B 2020, 10, 1534.  doi: 10.1016/j.apsb.2020.02.002

    61. [61]

      Li, M.; Li, S. Y.; Zhou, H.; Tang, X. F.; Wu, Y.; Jiang, W.; Tian, Z. G.; Zhou, X. C.; Yang, X. Z.; Wang, Y. C. Nat. Commun. 2020, 11, 1126.  doi: 10.1038/s41467-020-14963-0

    62. [62]

      Chen, Q.; Bai, H. Z.; Wu, W. T.; Huang, G. J.; Li, Y.; Wu, M.; Tang, G. P.; Ping, Y. Nano Lett. 2020, 20, 11.  doi: 10.1021/acs.nanolett.9b02182

    63. [63]

      Chen, Q.; Huang, G. J.; Wu, W. T.; Wang, J. W.; Hu, J. W.; Mao, J. M.; Chu, P. K.; Bai, H. Z.; Tang, G. P. Adv. Mater. 2020, 32, 1908185.  doi: 10.1002/adma.201908185

    64. [64]

      Liu, Y.; Hong, L.; Yu, L. S.; Jiang, H. D.; Chen, J. Z.; Meng, Q.; Chen, S. Q.; Zeng, S. Acta Pharm. Sin. 2011, 46, 19.

    65. [65]

      Sevastre, A. S.; Horescu, C.; Baloi, S. C.; Cioc, C. E.; Vatu, B. I.; Tuta, C.; Artene, S. A.; Danciulescu, M. M.; Tudorache, S.; Dricu, A. Coatings 2019, 9, 628.  doi: 10.3390/coatings9100628

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(171)
  • Abstract views(4535)
  • HTML views(2104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return