Citation: Yu Yue, Zhang Xinbo. Porous Metal-Organic Frameworks Lithium Metal Anode Protection Layer towards Long Life Li-O2 Batteries[J]. Acta Chimica Sinica, ;2020, 78(12): 1434-1440. doi: 10.6023/A20070290 shu

Porous Metal-Organic Frameworks Lithium Metal Anode Protection Layer towards Long Life Li-O2 Batteries

  • Corresponding author: Zhang Xinbo, xbzhang@ciac.ac.cn
  • Received Date: 18 July 2020
    Available Online: 12 October 2020

    Fund Project: the National Natural Science Foundation of China 21725103the National Natural Science Foundation of China 21771013the Technology and Industry for National Defence of the People'sRepublic of China JCKY2016130B010Projet suppored by the National Key R & D Program of China(No.2016YFB0100103), the Technology and Industry for National Defence of the People'sRepublic of China (No.JCKY2016130B010), and the National Natural Science Foundation of China(Nos.21725103, 21771013)the National Key R & D Program of China 2016YFB0100103

Figures(9)

  • Among the numerous successors of Li-ion batteries, Li-O2 cells become promising candidates because of their higher theoretical energy density (3500 Wh·kg-1). However, the uncontrolled dendrite growth and serious corrosion issues of lithium metal anode are major bottlenecks for practical application of Li-O2 batteries. To solve the above challenges, herein, we prepared metal-organic frameworks materials (MOF-801) with high specific surface area and abundant pores as a protection layer on lithium metal anode in Li-O2 batteries. In this manuscript, pure and cubic-shaped MOF-801 materials are successfully synthesized and the high specific surface area (762.9 m2·g-1) is confirmed. And MOF-801 is verified stable enough as a protection layer towards lithium metal anode and tetraethylene glycol dimethyl ether (TEGDME) 1 mol·L-1 LiCF3SO3 electrolyte system. Due to the rich pore structures and high specific surface area, MOF-801 can assist to form uniform Li+ flux and dendrite-free lithium deposition morphology can be confirmed in the scanning electron microscope images, which can avoid the short circuit even fire disaster from the uncontrollable dendrite growth. Besides, the shield effect as well as the water capture function of MOF-801 protection layer can also effectively prevent serious side reactions from the shuttle effect of the contaminants (H2O, O2 and strong oxidizing species). Consequently, this strategy enables stable electrode/electrolyte interface and achieves 800 h plating/stripping cycles under a low overpotential of 0.023 V. In contrast, the batteries without protection can only run for 254 h with the overpotential as high as 5 V at last. The electrochemical impedance spectroscopy results also verify that the much lower impedance of the lithium metal anode after protection. When applied in practical Li-O2 batteries with a fixed capacity of 1000 mAh·g-1 at a current density of 500 mA·g-1, stable and long-life cycle performance(170 cycles) has been realized in the Li-O2 batteries with MOF-801 protection layer, which is 2.88 times longer than those without protection. The batteries with MOF-801 protection layer also deliver a high discharge specific capacity of 8935 mAh·g-1. This unique protection layer design strategy illustrates fresh insight towards protection strategy in alkali metal anode batteries.
  • 加载中
    1. [1]

      Yang, X. Y.; Feng, X. L.; Jin, X.; Shao, M. Z.; Yan, B. L.; Yan, J. M.; Zhang, Y.; Zhang, X. B. Angew. Chem. Int. Ed. 2019, 58, 16411.

    2. [2]

      Wang, X.; Li, Y.; Bi, X.; Ma, L.; Wu, T.; Sina, M.; Wang, S.; Zhang, M.; Alvarado, J.; Lu, B.; Banerjee, A.; Amine, K.; Lu, J.; Meng, Y. S. Joule 2018, 2, 2381.

    3. [3]

      Sun, Y.; Zhao, Y.; Wang, J.; Liang, J.; Wang, C.; Sun, Q.; Lin, X.; Adair, K. R.; Luo, J.; Wang, D.; Li, R.; Cai, M.; Sham, T. K.; Sun, X. Adv. Mater. 2019, 31, e1806541.

    4. [4]

      Li, Z.; Liu, K.; Fan, K.; Yang, Y.; Shao, M.; Wei, M.; Duan, X. Angew. Chem. Int. Ed. 2019 58, 3962.

    5. [5]

      Lei, X.; Liu, X.; Ma, W.; Cao, Z.; Wang, Y.; Ding, Y. Angew. Chem. Int. Ed. 2018, 57, 16131.

    6. [6]

      Kang, T.; Wang, Y.; Guo, F.; Liu, C.; Zhao, J.; Yang, J.; Lin, H.; Qiu, Y.; Shen, Y.; Lu, W.; Chen, L. ACS Central Sci. 2019, 5, 468.

    7. [7]

      Mun, S. K.; Deepika; Seung, H. L.; Min, S. K.; Ji, H. R.; Kwang, R. L.; Lynden, A. A.; Won, I. C. Sci. Adv. 2019, 5, eaax5587.

    8. [8]

      Bay, M. C.; Wang, M.; Grissa, R.; Heinz, M. V. F.; Sakamoto, J.; Battaglia, C. Adv. Energy Mater. 2019, 10, 1902899.

    9. [9]

      Yu, Y.; Yin, Y.-B.; Ma, J.-L.; Chang, Z.-W.; Sun, T.; Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Energy Storage Mater. 2019, 18, 382.

    10. [10]

      Yu, Y.; Zhang, X.-B. Matter 2019, 1, 881.

    11. [11]

      Tong, B.; Huang, J.; Zhou, Z.; Peng, Z. Adv. Mater. 2018, 30, 1704841.

    12. [12]

      Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242(in Chinese).

    13. [13]

      Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese).

    14. [14]

      Wang, L.; Yang, G.; Wang, J.; Wang, S.; Peng, S.; Yan, W. Acta Chim. Sinica 2018, 76, 666(in Chinese).

    15. [15]

      Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156(in Chinese).

    16. [16]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chinese J. Chem. 2020, 38, 509.

    17. [17]

      Zheng, S.; Li, X.; Yan, B.; Hu, Q.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Adv. Energy Mater. 2017, 7, 1602733.

    18. [18]

      Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Joule 2018, 2, 2235.

    19. [19]

      Liang, Z.; Qu, C.; Guo, W.; Zou, R.; Xu, Q. Adv. Mater. 2018, 30, e1702891.

    20. [20]

      Li, S.; Dong, Y.; Zhou, J.; Liu, Y.; Wang, J.; Gao, X.; Han, Y.; Qi, P.; Wang, B. Energy Environ. Sci. 2018, 11, 1318.

    21. [21]

      Zhu, M.; Li, B.; Li, S.; Du, Z.; Gong, Y.; Yang, S. Adv. Energy Mater. 2018, 8, 1703505.

    22. [22]

      Wang, Z.; Wang, Z.; Yang, L.; Wang, H.; Song, Y.; Han, L.; Yang, K.; Hu, J.; Chen, H.; Pan, F. Nano Energy 2018, 49, 580.

    23. [23]

      Wang, L.; Zhu, X.; Guan, Y.; Zhang, J.; Ai, F.; Zhang, W.; Xiang, Y.; Vijayan, S.; Li, G.; Huang, Y.; Cao, G.; Yang, Y.; Zhang, H. Energy Storage Mater. 2018, 11, 191.

    24. [24]

      Jiang, Z.; Liu, T.; Yan, L.; Liu, J.; Dong, F.; Ling, M.; Liang, C.; Lin, Z. Energy Storage Mater. 2018, 11, 267.

    25. [25]

      He, Y.; Qiao, Y.; Chang, Z.; Zhou, H. Energy Environ. Sci. 2019, 12, 2327.

    26. [26]

      He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Adv. Energy Mater. 2018, 8, 1802130.

    27. [27]

      Deng, H.; Chang, Z.; Qiu, F.; Qiao, Y.; Yang, H.; He, P.; Zhou, H. Adv. Energy Mater. 2020, 10, 1903953.

    28. [28]

      Chu, F.; Hu, J.; Wu, C.; Yao, Z.; Tian, J.; Li, Z.; Li, C. ACS Appl. Mater. Inter. 2019, 11, 3869.

    29. [29]

      Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Energy Environ. Sci. 2020, 13, 1197.

    30. [30]

      Cao, L.; Lv, F.; Liu, Y.; Wang, W.; Huo, Y.; Fu, X.; Sun, R.; Lu, Z. Chem. Commun. 2015, 51, 4364.

    31. [31]

      Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. Joule 2018, 2, 2117.

    32. [32]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nat. Energy 2016, 1, 16094.

    33. [33]

      Hanikel, N.; Prevot, M. S.; Yaghi, O. M. Nat. Nanotech. 2020, 15, 348.

    34. [34]

      Farhad, F.; Markus, J. K.; Eugene, A. K.; Peter, J. W.; Yang, J. J.; Omar, M. Y. Sci. Adv. 2018, 4, eaat3198.

    35. [35]

      Choi, J. I.; Chun, H.; Lah, M. S. J. Am. Chem. Soc. 2018, 140, 10915.

    36. [36]

      Amandine, C.; Youssef, B.; Karim, A.; Prashant, M. B.; Renjith, S. P.; Aleksander, S.; Charlotte, M. C.; Guillaume, M.; Mohamed, E. Science 2017, 356, 731.

    37. [37]

      Zhang, J.; Bai, H. J.; Ren, Q.; Luo, H. B.; Ren, X. M.; Tian, Z. F.; Lu, S. ACS Appl. Mater. Inter. 2018, 10, 28656.

    38. [38]

      Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369.

    39. [39]

      Li, F.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. Chem. Commun. 2013, 49, 1175.

    40. [40]

      Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178.

    41. [41]

      Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.

    42. [42]

      Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. J. Phys. Chem. Lett. 2013, 4, 1060.

    43. [43]

      Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J.; Thompson, C. V.; Shao-Horn, Y. Energy Environ. Sci. 2013, 6, 2518.

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(52)
  • Abstract views(3467)
  • HTML views(564)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return