Citation: Zhu Congtan, Yang Ying, Zhao Beikai, Lin Feiyu, Luo Yuan, Ma Shupeng, Zhu Liu, Guo Xueyi. Electrochemical Synthesis of PEDOT and Its Application in Solid-State Dye-sensitized Solar Cells[J]. Acta Chimica Sinica, ;2020, 78(10): 1102-1110. doi: 10.6023/A20060275 shu

Electrochemical Synthesis of PEDOT and Its Application in Solid-State Dye-sensitized Solar Cells

  • Corresponding author: Yang Ying, muyicaoyang@csu.edu.cn
  • Received Date: 29 June 2020
    Available Online: 26 August 2020

    Fund Project: Qingyuan Innovation and Entrepreneurship Research Team Project 2018001The National Natural Science Foundation of China 61774169Project supported by the National Natural Science Foundation of China (No. 61774169) and Qingyuan Innovation and Entrepreneurship Research Team Project (No. 2018001)

Figures(5)

  • In this paper, the synthesis of poly(3, 4-ethylenedioxythiophene) (PEDOT) by cyclic voltammetry (CV) electrochemical deposition and its application in the counter electrode of solid-state dye-sensitized solar cells were studied. The influence of cycle times (10~50 times) on the morphology, thickness and optical properties of PEDOT films were explored by Fourier transform infrared spectroscopy (FTIR), atomic force microscope (AFM), scanning electron microscope (SEM) and ultraviolet-visible spectroscopy (UV-Vis). The photoelectrochemical properties of solid-state dye-sensitized solar cells based on PEDOT transparent counter electrode were characterized by J-V, electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent spectrum/photovoltage spectrum (IMPS/VS) and Tafel analysis. The results showed that an un-uniform film with the thickness of 0.5 μm and light transmittance of 80% was formed when CV cycle times was 10, where the PEDOT film was not completely covered on the substrate. When the CV cycles reached 30~40, a uniform and dense transparent film was obtained and the highest photoelectric conversion efficiency of the corresponding solid-state dye-sensitized solar cells reached 5.34%. This is because uniform and dense surface, good optical properties and high photo-electric catalysis properties (J0=2.51×10-3 A·cm-2) for I3- in the electrolyte, made the device obtain larger diffusion coefficient (Dn=28.80 μm2·ms-1) and carrier diffusion length (L=21.41 μm), which were favorable for charge transfer. When the number of CV cycles was further increased to 50 times, showing greater roughness, the PEDOT film was no longer growing uniformly. The PEDOT film deposited on the FTO surface underwent some dissolution and desorption, the PEDOT film became uneven, and the catalytic activity of PEDOT electrode to I3- in electrolyte was reduced. The device with PEDOT transparent counter electrode film deposited by cyclic voltammetry could also achieve double-side illumination with good catalytic activity to the electrolyte. Under the condition of double-side illumination, the photoelectric performance of the device using electrodeposited PEDOT as transparent counter electrode was improved by about 20%. The improvement of the photoelectric performance of the device is mainly due to the increase in the absorption of photons by the double-sided illumination.
  • 加载中
    1. [1]

      Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photovolt. 2010, 18, 144.  doi: 10.1002/pip.974

    2. [2]

      Luque, A.; Martí, A. Sol. Energ. Mat. Sol. C 2010, 94, 287.  doi: 10.1016/j.solmat.2009.10.001

    3. [3]

      König, D.; Casalenuovo, K.; Takeda, Y.; Conibeer, G.; Guillemoles, J. F.; Patterson, R.; Huang, L. M.; Green, M. A. Physica E 2010, 42, 2862.  doi: 10.1016/j.physe.2009.12.032

    4. [4]

      Davies, P. A.; Luque, A. Sol. Energ. Mat. Sol. C 1994, 33, 11.  doi: 10.1016/0927-0248(94)90284-4

    5. [5]

      Narayanaswamy, A.; Chen, G. Appl. Phys. Lett. 2003, 82, 3544.  doi: 10.1063/1.1575936

    6. [6]

      Coutts, T. J.; Fitzgerald, M. C. Phys. World 1998, 11, 49.

    7. [7]

      Bu, L.-L. M.S. Thesis, Huazhong University of Technology, Wuhan, 2016 (in Chinese).

    8. [8]

      Li, Q. H.; Wang, Y. M.; Li, W. J.; Zhang, T. T.; Cai, L.; Cheng, Z. X.; Li, H. Acta Optica Sin. 2012, 32, 152 (in Chinese).

    9. [9]

      Lan, Z.; Wu, J. H. Prog. Chem. 2010, 22, 2248 (in Chinese).

    10. [10]

      Pan, B.; Zhu, Y. Z.; Qiu, C. J.; Wang, B.; Zheng, J. Y. Acta Chim. Sinica 2018, 76, 215 (in Chinese).
       

    11. [11]

      Tian, Y. J.; Cai, N.; Chen, Y. T.; Qian, S. N.; Huo, Y. P. Chin. J. Org. Chem. 2018, 38, 1085 (in Chinese).

    12. [12]

      Wu, W. J.; Xin, C. H.; Pang, Z. H.; Xu, L.; Li, C. Acta Chim. Sinica 2019, 77, 545 (in Chinese).
       

    13. [13]

      Yuan, C. H.; Gao, X. Y.; Ma, J. F. Mater. Rev. 2017, 031, 223 (in Chinese).

    14. [14]

      Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W. Prog. Photovolt. 2004, 12, 320.

    15. [15]

      Fortuin, S.; Stryi-Hipp, G. Solar Collectors, Non-concentrating. Solar Energy, Springer, New York, 2013, pp. 79~96.

    16. [16]

      Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho, W. H.; Chen, H. C.; Ho, K. C. J. Power Sources 2009, 188, 313.  doi: 10.1016/j.jpowsour.2008.11.075

    17. [17]

      Pringle, J. M.; Armel, V.; Macfarlane, D. R. Chem. Commun. 2010, 46, 5367.  doi: 10.1039/c0cc01400a

    18. [18]

      Lee, T. H.; Do, K.; Lee, Y. W.; Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S. J. Mater. Chem. 2012, 22, 21624.  doi: 10.1039/c2jm34807a

    19. [19]

      Xiao, Y.; Wu, J.; Yue, G.; Lin, J.; Huang, M.; Lan, Z.; Fan, L. Electrochim. Acta 2012, 85, 432.  doi: 10.1016/j.electacta.2012.08.077

    20. [20]

      Rajagopal, P.; Mathan, K. P.; Muthuraaman, B. RSC Adv. 2020, 10, 4521.  doi: 10.1039/C9RA09715E

    21. [21]

      Zhang, W. W.; Wu, Y. Z.; Bahang, H. W.; Cao, Y.; Yi, C.; Saygili, Y.; Luo, J.; Liu, Y.; Kavan, L.; Moser, J.-E.; Hagfeldt, A.; Tian, H.; Zakeeruddin, S. M.; Zhu, W. H.; Gra¨tzel, M. Energy Environ. Sci. 2018, 11, 1779.  doi: 10.1039/C8EE00661J

    22. [22]

      Jang, Y. J.; Thogiti, S.; Lee, K.; Kim, G. H. Crystals 2019, 9, 452.  doi: 10.3390/cryst9090452

    23. [23]

      Malinauskas, T.; Daiva, T.-L.; Rüdiger, S.; Maryte, D.; Robert, S.; Henrike, W.; Vygintas, J.; Ingmar, B.; Vytautas, G. ACS Appl. Mater. Inter. 2015, 7, 11107.  doi: 10.1021/am5090385

    24. [24]

      Zhang, T. M.S. Thesis, Jinan University, Guangzhou, 2015 (in Chinese).

    25. [25]

      Xie, Y.; Jiang, F. X.; Xu, J. K. J. Funct. Mater. 2009, 40, 1987 (in Chinese).

    26. [26]

      Li, X.-D. Ph.D. Dissertation, East China Normal University, Shanghai, 2011 (in Chinese).

    27. [27]

      Ahmadi, S.; Asim, N.; Alghoul, M.; Hammadi, F.; Saeedfar, K.; Ludin, N.; Zaidi, S.; Sopian, K. Inter. J. Photoenergy 2014, 2014, 1.

    28. [28]

      Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.  doi: 10.1016/j.jpowsour.2015.05.081

    29. [29]

      Cui, C. C.; Wang, M. J. Hefei Univ. Technol. Nat. Sci. Ed. 2012, 11, 1541 (in Chinese).

    30. [30]

      Lattach, Y.; Deniset-Besseau, A.; Guigner, J.-M.; Remit, S. Radiat. Physic. Chem. 2013, 82, 44.  doi: 10.1016/j.radphyschem.2012.09.009

    31. [31]

      Beverina, L.; Drees, M.; Facchetti, A.; Salamone, M.; Ruffo, R.; Pagani, G. A. Eur. J. Org. Chem. 2011, 5555.

    32. [32]

      Azimi, H.; Senes, A.; Scharber, M. C.; Hingerl, K.; Brabec, C. J. Adv. Energ. Mater. 2011, 1, 1162.  doi: 10.1002/aenm.201100331

    33. [33]

      Dkhissi, A.; Brocorens, P.; Lazzaroni, R. Chem. Phys. Lett. 2006, 432, 167.  doi: 10.1016/j.cplett.2006.10.015

    34. [34]

      Ohira, M.; Koizumi, Y.; Nishiyama, H.; Tomita, I.; Inagi, S. Polym. J. 2017, 49, 163.  doi: 10.1038/pj.2016.100

    35. [35]

      Ahmad, S.; Yum, J.-H.; Zhang, X.; Gratzel, M.; Butta, H.-J.; Nazeeruddin, M. K. J. Mater. Chem. 2010, 20, 1654.  doi: 10.1039/b920210b

    36. [36]

      Hong, C. K.; Ko, H. S.; Han, E. M.; Park, K. H. Int. J. Electrochem. Sci. 2015, 10, 5521.

    37. [37]

      Guo, X.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D.; Zhou, C.; Shen, J.; Hong, J.; Yang, Y. Mater. Today Energy 2017, 5, 320.  doi: 10.1016/j.mtener.2017.07.013

    38. [38]

      Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X. Nano Energy 2016, 26, 123.  doi: 10.1016/j.nanoen.2016.05.010

    39. [39]

      Yang, Y.; Chen, T.; Pan, D. Q.; Zhang, Z.; Guo, X. Y. Acta Chim. Sinica 2018, 76, 681 (in Chinese).
       

    40. [40]

      Lagemaat, J. V. D.; Frank, A. J. J. Phys. Chem. B 2001, 105, 11194.  doi: 10.1021/jp0118468

    41. [41]

      Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Crit. Care Nurse 2004, 33, 17.

    42. [42]

      Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.  doi: 10.1021/nl062000o

    43. [43]

      Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.-H.; Sun, Z.-B.; Wang, J.-H.; Zhou, C.-H.; Wang, Y.-W.; Guo, X.-Y.; Chu, P. K.; Yu, X.-F. Adv. Mater. 2016, 28, 8937.  doi: 10.1002/adma.201602382

    44. [44]

      Gao, J.; Yang, Y.; Yan, J.; Zhang, Z.; Pan, D.; Dai, Q.; Guo, X. J. Alloy. Compd. 2018, 764, 482.  doi: 10.1016/j.jallcom.2018.06.079

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(42)
  • Abstract views(2274)
  • HTML views(756)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return