Citation: Liu Yanhong, Zhang Dongxu, Mao Baodong, Huang Hui, Liu Yang, Tan Huaqiao, Kang Zhenhui. Progress in Carbon Dots from the Perspective of Quantum Dots[J]. Acta Chimica Sinica, ;2020, 78(12): 1349-1365. doi: 10.6023/A20060274 shu

Progress in Carbon Dots from the Perspective of Quantum Dots

  • Corresponding author: Mao Baodong, maobd@ujs.edu.cn Huang Hui, hhuang0618@suda.edu.cn Liu Yang, yangl@suda.edu.cn Kang Zhenhui, zhkang@suda.edu.cn
  • Received Date: 10 July 2020
    Available Online: 24 August 2020

    Fund Project: Natural Science Foundation of Jiangsu Province BK20190041the National Natural Science Foundation of China 21771132Innovative Research Group Project of the National Natural Science Foundation of China 51821002the National Natural Science Foundation of China 51972216the National Natural Science Foundation of China 21501072the National Natural Science Foundation of China 51725204the National Natural Science Foundation of China 52041202the National MCF Energy R & D Program 2018YFE0306105Natural Science Foundation of Jiangsu Province BK20150489the National Natural Science Foundation of China 21908081Project supported by the National Natural Science Foundation of China (Nos. 21908081, 21501072, 51972216, 51725204, 21771132, 52041202), the National MCF Energy R & D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), Natural Science Foundation of Jiangsu Province (Nos. BK20190041 and BK20150489), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project

Figures(7)

  • Carbon dots (CDots) not only possess the characteristics of strong luminescence and small size similar to traditional quantum dots, but also show the advantages of good water dispersibility and biocompatibility beyond traditional quantum dots. As an emerging branch of the quantum dots family, the structure, synthetic chemistry and photoelectric properties of CDots are quite different from those of traditional quantum dots, which also provide new opportunities and challenges for the development of quantum dots. With the rapid development and deepening of the field of CDots, it is more and more necessary to compare them with traditional quantum dots on some basic concepts, and to clarify the unique characteristics and key challenges of CDots from the view of traditional quantum dots. In this review, we focus on the aspects of basic structure, synthetic chemistry, optical properties and application research, in an effort to reexamine the research progress and challenges in CDots from the view of fundamental concepts of traditional quantum dots.
  • 加载中
    1. [1]

      Brus, L. E. J. Chem. Phys. 1984, 80, 4403.

    2. [2]

      Gaponenko, S. V. Optical Properties of Semiconductor Nanoparticles, Cambridge University Press, Cambridge, UK, 1998.

    3. [3]

      Klimov, V. I. Nanocrystal Quantum Dots, 2nd ed., CRC Press, 2010.

    4. [4]

      Alivisatos, A. P. Science 1996, 271, 933.

    5. [5]

      Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.

    6. [6]

      Pietryga, J. M.; Park, Y.-S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Chem. Rev. 2016, 116, 10513.

    7. [7]

      Wegner, K. D.; Hildebrandt, N. Chem. Soc. Rev. 2015, 44, 4792.

    8. [8]

      Howes, P. D.; Chandrawati, R.; Stevens, M. M. Science 2014, 346, 1247390.

    9. [9]

      Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Science 2016, 353, aac5523.

    10. [10]

      Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362.

    11. [11]

      Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Chem. Rev. 2016, 116, 10934.

    12. [12]

      Wang, X.; Sun, G.; Li, N.; Chen, P. Chem. Soc. Rev. 2016, 45, 2239.

    13. [13]

      Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736.

    14. [14]

      Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Adv. Sci. 2019, 6, 1901316.

    15. [15]

      Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y. J. Am. Chem. Soc. 2006, 128, 7756.

    16. [16]

      Cao, L.; Wang, X.; Meziani, M. J.; Wang, F.; Lu. H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P. J. Am. Chem. Soc. 2007, 129, 11318.

    17. [17]

      Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z. J. Am. Chem. Soc. 2007, 129, 744.

    18. [18]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20, 4539.

    19. [19]

      Baker, S. N.; Baker, G. A. Angew. Chem. Int. Ed. 2010, 49, 6726.

    20. [20]

      Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T. Angew. Chem. Int. Ed. 2010, 49, 4430.

    21. [21]

      Hu, C.; Li, M.; Qiu, J.; Sun, Y. P. Chem. Soc. Rev. 2019, 48, 2315.

    22. [22]

      Arcudi, F.; Dordevic, L.; Prato, M. Acc. Chem. Res. 2019, 52, 2070.

    23. [23]

      Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Trends Chem. 2019, 1, 235.

    24. [24]

      Martin, N.; Bodwell, G. Acc. Chem. Res. 2019, 52, 2757.

    25. [25]

      Liu, Y.; Huang, H.; Cao, W.; Mao, B.; Liu, Y.; Kang, Z. Mater. Chem. Front. 2020, 4, 1586.

    26. [26]

      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am.Chem. Soc. 1993, 115, 8706.

    27. [27]

      Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183.

    28. [28]

      Owen, J. Science 2015, 347, 615.

    29. [29]

      Sowers, K. L.; Swartz, B.; Krauss, T. D. Chem. Mater. 2013, 25, 1351.

    30. [30]

      Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S.; Chem. Rev. 2016, 116, 10731.

    31. [31]

      Cayuela, A.; Soriano, M. L.; Carrillo-Carrion, C.; Valcarcel, M. Chem. Commun. 2016, 52, 1311.

    32. [32]

      Rakovich, A.; Rakovich, T. J. Mater. Chem. B 2018, 6, 2690.

    33. [33]

      Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086.

    34. [34]

      Brus, L. J. Chem. Phys. 1983, 79, 5566.

    35. [35]

      Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.

    36. [36]

      Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.

    37. [37]

      Kelarakis, A. Curr. Opin. Colloid Interface Sci. 2015, 20, 354.

    38. [38]

      Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Adv. Sci. 2019, 6, 1901316.

    39. [39]

      Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Doblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Nat. Commun. 2017, 8, 1401.

    40. [40]

      Dordevic, L.; Arcudi, F.; D’Urso, A.; Cacioppo, M.; Micali, N.; Buergi, T.; Purrello, R.; Prato, M. Nat. Commun. 2018, 9, 3442.

    41. [41]

      Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z. A.; Chen, A.; Jin, M.; Yang, S. Nat. Commun. 2018, 9, 2249.

    42. [42]

      Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362.

    43. [43]

      Gan, Z.; Xu, H.; Hao, Y. Nanoscale 2016, 8, 7794.

    44. [44]

      Xu, Q.; Kuang, T.; Liu, Y.; Cai, L.; Peng, X.; Sreenivasan Sreeprasad, T.; Zhao, P.; Yu, Z.; Li, N. J. Mater. Chem. B 2016, 4, 7204.

    45. [45]

      Scher, E. C.; Manna, L.; Alivisatos, A. P. Philos. Trans. 2003, 361, 241.

    46. [46]

      Shi, R.; Dai, X.; Li, W.; Lu, F.; Liu, Y.; Qu, H.; Li, H.; Chen, Q.; Tian, H.; Wu, E.; Wang, Y.; Zhou, R.; Lee, S.-T.; Lifshitz, Y.; Kang, Z.; Liu, J. ACS Nano 2017, 11, 9500.

    47. [47]

      Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. Nat. Mater. 2016, 15, 364.

    48. [48]

      El-Sayed, M. A. Acc. Chem. Res. 2004, 37, 326.

    49. [49]

      Peng, X. G. Acc. Chem. Res. 2010, 43, 1387.

    50. [50]

      Regulacio, M. D.; Han, M.-Y. Acc. Chem. Res. 2010, 43, 621.

    51. [51]

      Smith, A. M.; Nie, S. Acc. Chem. Res. 2010, 43, 190.

    52. [52]

      Nirmal, M.; Brus, L. Acc. Chem. Res. 1999, 32, 407.

    53. [53]

      Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220.

    54. [54]

      Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 5118.

    55. [55]

      Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. J. Mater. Chem. 2012, 22, 24230.

    56. [56]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M. Nano Lett. 2012, 12, 844.

    57. [57]

      Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Energy Environ. Sci. 2012, 5, 8869.

    58. [58]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Small 2008, 4, 455.

    59. [59]

      Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W.; Wang, X.; Sun, H.; Yang, B. Adv. Funct. Mater. 2012, 22, 4732.

    60. [60]

      Ding, C.; Zhu, A.; Tian, Y. Acc. Chem. Res. 2014, 47, 20.

    61. [61]

      Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. J. Mater. Chem. B 2016, 4, 5772.

    62. [62]

      Li, L.; Dong, T. J. Mater. Chem. C 2018, 6, 7944.

    63. [63]

      Wang, X.-Y.; Yao, X.; Narita, A.; Muellen, K. Acc. Chem. Res. 2019, 52, 2491.

    64. [64]

      Pozo, I.; Guitian, E.; Perez, D.; Pena, D. Acc. Chem. Res. 2019, 52, 2472.

    65. [65]

      Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Nano Lett. 2015, 15, 6030.

    66. [66]

      Wang, X.-Y.; Yao, X.; Muellen, K. Sci. China: Chem. 2019, 62, 1099.

    67. [67]

      Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.

    68. [68]

      Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685.

    69. [69]

      Jing, L.; Kershaw, S. V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A. L.; Gao, M. Chem. Rev. 2016, 116, 10623.

    70. [70]

      De Trizio, L.; Manna, L. Chem. Rev. 2016, 116, 10852.

    71. [71]

      Reiss, H. J. Chem. Phys. 2004, 19, 482.

    72. [72]

      Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.

    73. [73]

      LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.

    74. [74]

      Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 4630.

    75. [75]

      Ostwald, W. Z. Phys. Chem. 2017, 22, 289.

    76. [76]

      Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. Science 2012, 336, 61.

    77. [77]

      Woehl, T. J.; Evans, J. E.; Arslan, L.; Ristenpart, W. D.; Browning, N. D. ACS Nano 2012, 6, 8599.

    78. [78]

      Sun, Y.; Ren, Y. Part. Part. Syst. Charact. 2013, 30, 399.

    79. [79]

      Liu, Q.; Li, Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. J. Mater. Chem. C 2015, 3, 7492.

    80. [80]

      Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. J. Am. Chem. Soc. 2009, 131, 4564.

    81. [81]

      Liu, H.; Ye, T.; Mao, C. Angew. Chem., Int. Ed. 2007, 46, 6473.

    82. [82]

      Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Angew. Chem., Int. Ed. 2015, 54, 2970.

    83. [83]

      Li, F.; Li, Y.; Yang, X.; Han, X.; Jiao, Y.; Wei, T.; Yang, D.; Xu, H.; Nie, G. Angew. Chem., Int. Ed. 2018, 57, 2377.

    84. [84]

      Yang, S.; Li, W.; Ye, C.; Wang, G.; Tian, H.; Zhu, C.; He, P.; Ding, G.; Xie, X.; Liu, Y.; Lifshitz, Y.; Lee, S.-T.; Kang, Z.; Jiang, M. Adv. Mater. 2017, 29, 1605625.

    85. [85]

      Dordevic, L.; Arcudi, F.; Prato, M. Nat. Protoc. 2019, 14, 2931.

    86. [86]

      Verma, N. C.; Yadav, A.; Nandi, C. K. Nat. Commun. 2019, 10, 2391.

    87. [87]

      Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Adv. Mater. 2018, 30, 1704740.

    88. [88]

      Zhang, J.; Yuan, Y.; Liang, G.; Yu, S.-H. Adv. Sci. 2015, 2, 1500002.

    89. [89]

      Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2018, 57, 6216.

    90. [90]

      Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Dalton Trans. 2012, 41, 9526.

    91. [91]

      Zhang, J.; Yu, S.-H. Mater. Today 2016, 19, 382.

    92. [92]

      Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Chem. Soc. Rev. 2015, 44, 5793.

    93. [93]

      Zhang, L.; Xia, Y. Adv. Mater. 2014, 26, 2600.

    94. [94]

      Pu, Y.; Cai, F.; Wang, D.; Wang, J.-X.; Chen, J.-F. Ind. Eng. Chem. Res. 2018, 57, 1790.

    95. [95]

      Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. J. Phys. Chem. C 2010, 114, 897.

    96. [96]

      Munro, A. M.; Plante, I. Jen-La; Ng, M. S.; Ginger, D. S. J. Phys. Chem. C 2007, 111, 6220.

    97. [97]

      Cao, W.; Qin, Y.; Huang, H.; Mao, B.; Liu, Y.; Kang, Z. ACS Sustainable Chem. Eng. 2019, 7, 20043.

    98. [98]

      Yu, P. R.; Beard, M. C.; Ellingson, R. J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. J. Phys. Chem. B 2005, 109, 7084.

    99. [99]

      Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. J. Am. Chem. Soc. 2012, 134, 20705.

    100. [100]

      Dong, Y.; Pang, H.; Yang, H. B.; Guo, C.; Shao, J.; Chi, Y.; Li, C. M.; Yu, T. Angew. Chem. Int. Ed. 2013, 52, 7800.

    101. [101]

      Arcudi, F.; Dordevic, L.; Prato, M. Angew. Chem. Int. Ed. 2016, 55, 2107.

    102. [102]

      Deng, L.; Wang, X.; Kuang, Y.; Wang, C.; Luo, L.; Wang, F.; Sun, X. Nano Res. 2015, 8, 2810.

    103. [103]

      Zhou, J.; Yang, Y.; Zhang, C. Y. Chem. Rev. 2015, 115, 11669.

    104. [104]

      Chen, B.; Pradhan, N.; Zhong, H. J. Phys. Chem. Lett. 2018, 9, 435.

    105. [105]

      Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2003, 15, 2854.

    106. [106]

      Zhou, J.; Zhu, M.; Meng, R.; Qin, H.; Peng, X. J. Am. Chem. Soc. 2017, 139, 16556.

    107. [107]

      Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445.

    108. [108]

      Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389.

    109. [109]

      Chuang, C. H.; Burda, C. J. Phys. Chem. Lett. 2012, 3, 1921.

    110. [110]

      Wheeler, D. A.; Zhang, J. Z. Adv. Mater. 2013, 25, 2878.

    111. [111]

      Mao, B.; Chuang, C. H.; Lu, F.; Sang, L.; Zhu, J.; Burda, C. J. Phys. Chem. C 2013, 117, 648.

    112. [112]

      Mao, B.; Chuang, C. H.; McCleese, C.; Zhu, J.; Burda, C. J. Phys. Chem. C 2014, 118, 13883.

    113. [113]

      Mao, B.; Chuang, C. H.; Wang, J.; Burda, C. J. Phys. Chem. C 2011, 115, 8945.

    114. [114]

      Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873.

    115. [115]

      Cordones, A. A.; Leone, S. R. Chem. Soc. Rev. 2013, 42, 3209.

    116. [116]

      Efros, A. L.; Nesbitt, D. J. Nat. Nanotechnol. 2016, 11, 661.

    117. [117]

      Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Nano Lett. 2019, 19, 5553.

    118. [118]

      Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Nano Today 2014, 9, 590.

    119. [119]

      Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; Qu, S.; Zboril, R.; Rogach, A. L. Adv. Mater. 2018, 30, 1705913.

    120. [120]

      Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J.; Shan, C. X. Adv. Sci. 2019, 6, 1900766.

    121. [121]

      Zhu, Z.; Zhai, Y.; Li, Z.; Zhu, P.; Mao, S.; Zhu, C.; Du, D.; Belfiore, L. A.; Tang, J.; Lin, Y. Mater. Today 2019, 30, 52.

    122. [122]

      Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P.; Zhu, G.; Lee, C. S.; Zhang, W. Nano Res. 2017, 10, 3113.

    123. [123]

      Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2015, 54, 5360.

    124. [124]

      Xiong, Y.; Schneider, J.; Ushakova, E. V.; Rogach, A. L. Nano Today 2018, 23, 124.

    125. [125]

      Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Adv. Mater. 2011, 23, 5801.

    126. [126]

      Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. ACS Nano 2016, 10, 484.

    127. [127]

      Xia, C.; Wu, W.; Yu, T.; Xie, X.; Van Oversteeg, C.; Gerritsen, H. C.; Donega, C. D. M. ACS Nano 2018, 12, 8350.

    128. [128]

      Gan, Z.; Wu, X.; Zhou, G.; Shen, J.; Chu, P. K. Adv. Opt. Mater. 2013, 1, 554.

    129. [129]

      Yadav, A.; Bai, L.; Yang, Y.; Liu, J.; Kaushik, A.; Cheng, G. J.; Jiang, L.; Chi, L.; Kang, Z. Nanoscale 2017, 9, 5049.

    130. [130]

      Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Angew. Chem. Int. Ed. 2020, 59, 1263.

    131. [131]

      Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Nat. Commun. 2019, 10, 1789.

    132. [132]

      Scholes, G. D.; Rumbles, G. Nat. Mater. 2006, 5, 683.

    133. [133]

      Das, S. K.; Liu, Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Nano Lett. 2014, 14, 620.

    134. [134]

      Cadranel, A.; Margraf, J. T.; Strauss, V.; Clark, T.; Guldi, D. M.; Acc. Chem. Res. 2019, 52, 955.

    135. [135]

      Vallan, L.; Canton-Vitoria, R.; Gobeze, H. B.; Jang, Y.; Arenal, R.; Benito, A. M.; Maser, W. K.; D’Souza, F.; Tagmatarchis, N. J. Am. Chem. Soc. 2018, 140, 13488.

    136. [136]

      Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T.; Guldi, D. M. J. Am. Chem. Soc. 2014, 136, 17308.

    137. [137]

      Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J. Nanoscale 2013, 5, 4015.

    138. [138]

      Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau, S. P. ACS Nano 2012, 6, 5102.

    139. [139]

      Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Adv. Mater. 2015, 27, 1663.

    140. [140]

      Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T. Adv. Mater. 2016, 28, 9454.

    141. [141]

      Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Adv. Mater. 2014, 26, 3297.

    142. [142]

      Cadranel, A.; Strauss, V.; Margraf, J. T.; Winterfeld, K. A.; Vogl, C.; Dordevic, L.; Arcudi, F.; Hoelzel, H.; Jux, N.; Prato, M.; Guldi, D. M. J. Am. Chem. Soc. 2018, 140, 904.

    143. [143]

      Arcudi, F.; Strauss, V.; Dordevic, L.; Cadranel, A.; Guldi, D. M.; Prato, M. Angew. Chem. Int. Ed. 2017, 56, 12097.

    144. [144]

      Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Sauer, M.; Weiss, S. Opt. Lett. 2001, 26, 825.

    145. [145]

      Grecco, H. E.; Lidke, K. A.; Heintzmann, R.; Lidke, D. S.; Spagnuolo, C.; Martinez, O. E.; Jares-Erijman, E. A.; Jovin, T. M. Microsc. Res. Tech. 2004, 65, 169.

    146. [146]

      Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Chem. Soc. Rev. 2016, 45, 1211.

    147. [147]

      Doane, T. L.; Burda, C.; Chem. Soc. Rev. 2012, 41, 2885.

    148. [148]

      Akerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12617.

    149. [149]

      Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.

    150. [150]

      Rieger, S.; Kulkarni, R. P.; Darcy, D.; Fraser, S. E.; Koster, R. W. Dev. Dyn. 2005, 234, 670.

    151. [151]

      Barroso, M. M. J. Histochem. Cytochem. 2011, 59, 237.

    152. [152]

      Lidke, K. A.; Rieger, B.; Jovin, T. M.; Heintzmann, R. Opt. Express. 2005, 13, 7052.

    153. [153]

      De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225.

    154. [154]

      Freeman, R.; Willner, I. Chem. Soc. Rev. 2012, 41, 4067.

    155. [155]

      Wu, P.; Yan, X.-P. Chem. Soc. Rev. 2013, 42, 5489.

    156. [156]

      Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Chem. Rev. 2016, 536.

    157. [157]

      Silvi, S.; Credi, A. Chem. Soc. Rev. 2015, 44, 4275.

    158. [158]

      Biju, V.; Itoh, T.; Ishikawa, M. Chem. Soc. Rev. 2010, 39, 3031.

    159. [159]

      Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Chem. Soc. Rev. 2015, 44, 193.

    160. [160]

      Xu, G.; Zeng, S.; Zhang, B.; Swihart, M. T.; Yong, K.-T.; Prasad, P. N. Chem. Rev. 2016, 116, 12234.

    161. [161]

      Yu, M. X.; Zheng, J. ACS Nano 2015, 9, 6655.

    162. [162]

      Yong, K.-T.; Law, W.-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M. T. Prasad, P. N. Chem. Soc. Rev. 2013, 42, 1236.

    163. [163]

      Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P. Mahmoudi, M. Chem. Soc.Rev. 2012, 41, 2323.

    164. [164]

      Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2007, 25, 1165.

    165. [165]

      Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Nat. Nanotechnol. 2010, 5, 42.

    166. [166]

      Bradburne, C. E.; Delehanty, J. B.; Gemmill, K. B.; Mei, B. C.; Mattoussi, H.; Susumu, K.; Blanco-Canosa, J. B.; Dawson, P. E. and Medintz, I. L. Bioconjugate Chem. 2013, 24, 1570.

    167. [167]

      Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S. Chan, W. C. W. Small 2010, 6, 138.

    168. [168]

      Hsieh, Y.-K.; Hsieh, H.-A.; Hsieh, H.-F.; Wang, T.-H.; Ho, C.-C.; Lin, P.-P.; Wang, C.-F. J. Anal. At. Spectrom. 2013, 28, 1396.

    169. [169]

      Longmire, M.; Choyke, P. L.; Kobayashi, H. Nanomedicine 2008, 3, 703.

    170. [170]

      Yang, K.; Feng, L.; Shi, X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530.

    171. [171]

      Nekoueian, K.; Amiri, M. o.; Sillanpaa, M.; Marken, F.; Boukherroub, R.; Szunerits, S. Chem. Soc. Rev. 2019, 48, 4281.

    172. [172]

      Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K.-T.; Chen, X. Chem. Rev. 2019, 119, 9559.

    173. [173]

      Kang, Z. H.; Lee, S. T. Nanoscale 2019, 11, 19214.

    174. [174]

      Pang, C.; Gong, Y. J. Agric. Food Chem. 2019, 67, 7561.

    175. [175]

      Shi, X.; Wei, W.; Fu, Z.; Gao, W.; Zhang, C.; Zhao, Q.; Deng, F.; Lu, X. Talanta 2019, 194, 809.

    176. [176]

      Dong, Y.; Cai, J.; You, X.; Chi, Y. Analyst, 2015, 140, 7468.

    177. [177]

      Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P. J. Am. Chem. Soc. 2009, 131, 11308.

    178. [178]

      Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y.-P. J. Phys. Chem. C 2009, 113, 18110.

    179. [179]

      Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.-S.; Zhang, W.; Han, X. Nat. Commun. 2014, 5, 4596.

    180. [180]

      Du, J.; Xu, N.; Fan, J.; Sun, W.; Peng, X. Small 2019, e1805087.

    181. [181]

      Li, H.; Huang, J.; Song, Y.; Zhang, M.; Wang, H.; Lu, F.; Huang, H.; Liu, Y.; Dai, X.; Gu, Z.; Yang, Z.; Zhou, R.; Kang, Z. ACS Appl. Mater. Interfaces 2018, 10, 26936.

    182. [182]

      Xin, Q.; Shah, H.; Nawaz, A.; Xie, W.; Akram, M. Z.; Batool, A.; Tian, L.; Jan, S. U.; Boddula, R.; Guo, B.; Liu, Q.; Gong, J. R. Adv. Mater. 2019, 31, 1804838.

    183. [183]

      Devi, P.; Saini, S.; Kim, K.-H. Biosens. Bioelectron. 2019, 141, 111158.

    184. [184]

      Li, H.; Kong, W.; Liu, J.; Yang, M.; Huang, H.; Liu, Y.; Kang, Z. J. Mater. Chem. B 2014, 2, 5652.

    185. [185]

      Wang, Y.; Xia, Y. Optical, Mikrochim. Acta 2019, 186, 50.

    186. [186]

      Garg, B.; Bisht, T. Molecules 2016, 21, 1653.

    187. [187]

      Li, H.; Huang, J.; Liu, Y.; Lu, F.; Zhong, J.; Wang, Y.; Li, S.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. Nano Res. 2019, 12, 1585.

    188. [188]

      Shi, R.; Li, H.; Wu, E.; Xiong, L.; Lv, R.; Guo, R.; Liu, Y.; Xu, G.; Kang, Z.; Liu, J. Nanoscale 2017, 9, 8410.

    189. [189]

      Li, H.; Guo, S.; Li, C.; Huang, H.; Liu, Y.; Kang, Z. ACS Appl. Mater. Interfaces 2015, 7, 10004.

    190. [190]

      Biju, V. Chem. Soc. Rev. 2014, 43, 744.

    191. [191]

      Zhang, M.; Wang, H.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. ACS Appl. Bio Mater. 2018, 1, 894.

    192. [192]

      Li, H.; Huang, J.; Lu, F.; Liu, Y.; Song, Y.; Sun, Y.; Zhong, J.; Huang, H.; Wang, Y.; Li, S.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. ACS Appl. Bio Mater. 2018, 1, 663.

    193. [193]

      Zhang, M.; Hu, L.; Wang, H.; Song, Y.; Liu, Y.; Li, H.; Shao, M.; Huang, H.; Kang, Z. Nanoscale 2018, 10, 12734.

    194. [194]

      Huang, H.; Yang, S.; Liu, Y.; Yang, Y.; Li, H.; McLeod, J. A.; Ding, G.; Huang, J.; Kang, Z. ACS Appl. Bio Mater. 2019, 2, 5144.

    195. [195]

      Zhang, M.; Wang, H.; Liu, P.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. Environ. Sci.: Nano 2019, 6, 3316.

    196. [196]

      Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y.-K. ACS Nano 2013, 7, 6858.

    197. [197]

      Kong, W.; Liu, J.; Liu, R.; Li, H.; Liu, Y.; Huang, H.; Li, K.; Liu, J.; Lee, S.-T.; Kang, Z. Nanoscale 2014, 6, 5116.

    198. [198]

      Kim, T. H.; Sirdaarta, J. P.; Zhang, Q.; Eftekhari, E.; John, J. S.; Kennedy, D.; Cock, I. E.; Li, Q. Nano Res. 2018, 11, 2204.

    199. [199]

      Roy, P.; Periasamy, A. P.; Lin, C.-Y.; Her, G.-M.; Chiu, W.-J.; C.-L. Shu, C.-L. Li.; Huang, C.-C.; Liang, C.-T.; Chang, H.-T. Nanoscale 2015, 7, 2504.

    200. [200]

      Qin, Y.; Zhou, Z.-W.; Pan, S.-T.; He, Z.-X.; Zhang, X.; Qiu, J.-X.; Duan, W.; Yang, T.; Zhou, S.-F. Toxicology 2015, 327, 62.

    201. [201]

      Chandra, A.; Deshpande, S.; Shinde, D. B.; Pillai, V. K.; Singh, N. ACS Macro Lett. 2014, 3, 1064.

    202. [202]

      Segawa, Y.; Levine D. R.; Itami, K. Acc. Chem. Res. 2019, 52, 2760.

    203. [203]

      Rim, Y. S.; Bae, S. H.; J. Chen, H.; De Marco, N.; Yang, Y. Adv. Mater. 2016, 28, 4415.

    204. [204]

      Jang, E.; Jun, S.; Jang, H.; Llim, J.; Kim, B.; Kim, Y. Adv. Mater. 2010, 22, 3076.

    205. [205]

      Zhu, H.; Yang Y.; Lian, T. Acc. Chem. Res. 2013, 46, 1270.

    206. [206]

      McGuire, J. A.; Joo, J.; Pietryga, J. M.; Schaller, R. D.; Klimov, V. I. Acc. Chem. Res. 2008, 41, 1810.

    207. [207]

      Vanmaekelbergh, D.; Liljeroth, P.; Chem. Soc. Rev. 2005, 34, 299.

    208. [208]

      Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H. W.; Law, M. Nano Lett. 2010, 10, 1960.

    209. [209]

      Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978.

    210. [210]

      Kovalenko, M. V.; Scheele M.; Talapin, D. V. Science 2009, 324, 1417.

    211. [211]

      Kagan, C. R.; Murray, C. B. Nat. Nanotechnol. 2015, 10, 1013.

    212. [212]

      Dolzhnikov, D. S.; Zhang, H.; Jang, J.; Son, J. S.; Panthani, M. G.; Shibata, T.; Chattopadhyay S.; Talapin, D. V. Science 2015, 347, 425.

    213. [213]

      Colvin, V. L.; Schlamp M. C.; Alivisatos, A. P. Nature 1994, 370, 354.

    214. [214]

      Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Cao, Y. H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Nature 2014, 515, 96.

    215. [215]

      Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.; Klimov, V. I. Appl. Phys. Lett. 2003, 82, 2793.

    216. [216]

      Rosen, A. L.; Kuno, M.; Nirmal, M.; Norris D. J.; Bawendi, M. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 4843.

    217. [217]

      Chamarro, M.; Gourdon, C.; Lavallard, P; Lublinskaya, O.; Ekimov, A. I. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53, 1336.

    218. [218]

      Stouwdam, J. W.; Janssen, R. A. J. J. Mater. Chem. 2008, 18, 1889.

    219. [219]

      Kramer, I. J.; Sargent, E. H. ACS Nano 2011, 5, 8506.

    220. [220]

      Kim, M. R.; Ma, D. L. J. Phys. Chem. Lett. 2015, 6, 85.

    221. [221]

      Tian, J.; Zhang, Q.; Zhang, L.; Gao, R.; Shen, L.; Zhang, S.; Qu, X.; Cao G. Nanoscale 2013, 5, 936.

    222. [222]

      Zhang, Q.; Chen, G.; Yang, Y.; Shen, X.; Zhang, Y.; Li, C.; Yu, R.; Luo, Y.; Li D.; Meng, Q. Phys. Chem. Chem. Phys. 2012, 14, 6479.

    223. [223]

      Semeniuk, M.; Yi, Z.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z.-H.; Sain, M. ACS Nano 2019, 13, 6224.

    224. [224]

      Yuan, T.; Meng, T.; He, P.; Shi, Y. X. Y.; Li, C.; Li, X. H. Fan, L. Z.; Yang, S. H. J. Mater. Chem. C 2019, 7, 6820.

    225. [225]

      Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril R.; Rogach, A. L. Nano Today 2014, 9, 590.

    226. [226]

      Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj R.; Chand, S. J. Am. Chem. Soc. 2011, 133, 9960.

    227. [227]

      Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z. a.; Fan L.; Yang, S. Adv. Mater. 2017, 29, 1604436.

    228. [228]

      Jia, H. R. Wang, Z. B. Yuan, T.; Yuan, F. L.; Li, X. H.; Li, Y. C. Tan, Z. A.; Fan, L. Z.; Yang, S. H. Adv. Sci. 2019, 6, 1900397.

    229. [229]

      Yan, X.; Cui, X.; Li, B.; Li, L.-S. Nano Lett. 2010, 10, 1869.

    230. [230]

      Costa, R. D.; Lodermeyer, F.; Casillas R.; Guldi, D. M. Energy Environ. Sci. 2014, 7, 1281.

    231. [231]

      Guo, Q.; Yuan, F. L.; Zhang, B.; Zhou, S. J.; Zhang, J.; Bai, Y. M.; Fan, L. Z.; Hayat, ; T.; Alsaedi, A.; Tan, Z. A. Nanoscale 2019, 11, 115.

    232. [232]

      Owens, J.; Brus, L. J. Am. Chem. Soc. 2017, 139, 10939.

    233. [233]

      Jin, Z. H., Owour, P. Lei S. D.; Ge, L. H. Curr. Opin. Colloid Interface Sci. 2015, 20, 439.

    234. [234]

      Ni, G. X.; McLeod, A. S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K. W.; Sunku, S. S.; Jiang, B. Y.; Hone, J.; Dean, C. R.; M, M. Nature 2018, 557, 530.

    235. [235]

      Zhu, H.; Song, N.; Lv, H.; Hill, C. L.; Lian, T. J. Am. Chem. Soc. 2012, 134, 11701.

    236. [236]

      Razgoniaeva, N.; Moroz, P.; Lambright, S.; Zamkov, M. J. Phys. Chem. Lett. 2015, 6, 4352.

    237. [237]

      Wu, K.; Chen, Z.; Lv, H.; Zhu, H.; Hill, C. L.; Lian, T. J. Am. Chem. Soc. 2014, 136, 7708.

    238. [238]

      Wu, K. F.; Lian, T. Q. Chem. Soc. Rev. 2016, 45, 3781.

    239. [239]

      Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Science 2015, 347, 970.

    240. [240]

      Guo, S.; Zhao, S.; Wu, X.; Li, H.; Zhou, Y.; Zhu, C.; Yang, N.; Jiang, X.; Gao, J.; Bai, L.; Liu, Y.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. Nat. Commun. 2017, 8, 1828.

    241. [241]

      Wilker, M. B.; Schnitzenbaumer, K. J.; Dukovic, G. Isr. J. Chem. 2012, 52, 1002.

    242. [242]

      Gong, G.; Liu, Y.; Mao, B.; Tan, L.; Yang, Y.; Shi, W. Appl. Catal. B 2017, 216, 11.

    243. [243]

      Tan, L.; Liu, Y.; Mao, B.; Luo, B.; Gong, G.; Hong, Y.; Chen, B.; Shi, W. Inorg. Chem. Front. 2018, 5, 258.

    244. [244]

      Yang, Y.; Mao, B.; Gong, G.; Li, D.; Liu, Y.; Cao, W.; Xing, L.; Zeng, J.; Shi, W.; Yuan, S. Int. J. Hydrogen Energy 2019, 44, 15882.

    245. [245]

      Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Science 2015, 349, 632.

    246. [246]

      Acharya, K. P.; Khnayzer, R. S.; O’Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov. M. Nano Lett. 2011, 11, 2919.

    247. [247]

      Chen, X.; Shen, S.; Guo L.; Mao, S. S. Chem. Rev. 2010, 110, 6503.

    248. [248]

      Yang, Y.; Lian, T. Coord. Chem. Rev. 2014, 263–264, 229.

    249. [249]

      Tisdale, W. A.; Zhu, X. Y. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 965.

    250. [250]

      Berr, M. J.; Vaneski, A.; Mauser, C.; Fischbach, S.; Susha, A. S.; Rogach, A. L.; Jckel, F.; Feldmann, J. Small 2012, 8, 291.

    251. [251]

      Wu, K.; Chen, Z.; Lv, H.; Zhu, H.; Hill, C. L.; Lian, T. J. Am. Chem. Soc. 2014, 136, 7708.

    252. [252]

      O’Connor, T.; Panov, M. S.; Mereshchenko, A.; Tarnovsky, A. N.; Lorek, R.; Perera, D.; Diederich, G.; Lambright, S.; Moroz, P.; Zamkov, M. ACS Nano 2012, 6, 8156.

    253. [253]

      Khon, E.; Lambright, K.; Khnayzer, R. S.; Moroz, P.; Perera, D.; Butaeva, E.; Lambright, S.; Castellano, F. N.; Zamkov, M. Nano Lett. 2013, 13, 2016.

    254. [254]

      Bao, N.; Shen, L.; Takata, T.; Domen, K. Chem. Mater. 2008, 39, 110.

    255. [255]

      Yan, H.; Yang, J.; Ma, G.; Wu, G.; Xu, Z.; Lei, Z.; Shi, J.; Li, C. J. Catal. 2009, 266, 165.

    256. [256]

      Huang, L.; Wang, X.; Yang, J.; Liu, G.; Han, J.; Li, C. J. Phys. Chem. C 2013, 117, 11584.

    257. [257]

      Liu, M.; Jing, D.; Zhou, Z.; Guo, L. Nat. Commun. 2013, 4, 2278.

    258. [258]

      Yang, J.; Yan, H.; Wang, X.; Wen, F.; Wang, Z.; Fan, D.; Shi, J.; Li, C. J. Catal. 2012, 290, 151.

    259. [259]

      Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Dblinger, M.; Susha, A. S.; Rogach, A. L. Nat. Mater. 2014, 13, 1013.

    260. [260]

      Kalisman, P.; Nakibli, Y.; Amirav, L. Nano Lett. 2016, 16, 1776.

    261. [261]

      Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Chem. Soc. Rev. 2017, 46, 6111.

    262. [262]

      Li, Q.; Cao, R.; Cho, J.; Wu, G. Adv. Energy Mater. 2014, 4, 1301415.

    263. [263]

      Tang, C.; Zhang, Q. Adv. Mater. 2017, 29, 1604103.

    264. [264]

      Li, H. T.; Liu, R. H.; Kong, W. Q.; Liu, J.; Liu, Y.; Zhou, L.; Zhang, X.; Lee, S. T.; Kang, Z. H. Nanoscale 2014, 6, 867.

    265. [265]

      Han, Y. Z.; Huang, H.; Zhang, H. C.; Liu, Y.; Han, X.; Liu, R. H.; Li, H. T.; Kang, Z. H. ACS Catal. 2014, 4, 781.

    266. [266]

      Wang, X.; Cao, L.; Lu, F.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y.-P. Chem. Commun. 2009, 3774.

    267. [267]

      Kong, H. Li, W.; Liu, J.; Liu, N.; Huang, H.; Liu, Y.; Kang, Z. Carbon. 2015, 91, 66.

    268. [268]

      Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z. Nanoscale 2013, 5, 12272.

    269. [269]

      Fernando, K. A.; Sahu, S.; Liu, Y.; Lewis, W. K.; Guliants, E. A.; Jafariyan, A.; Wang, P.; Bunker, C. E.; Sun, Y. P. ACS Appl. Mater. Interfaces 2015, 7, 8363.

    270. [270]

      Jeon, S.-J.; Kang, T.-W.; Ju, J.-M.; Kim, M.-J.; Park, J. H.; Raza, F.; Han, J.; Lee, H.-R.; Kim, J.-H. Adv. Funct. Mater. 2016, 26, 8211.

    271. [271]

      Zhu, C.; Zhu, M.; Sun, Y.; Zhou, Y.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Liu, Y.; Kang, Z. Appl. Catal. B 2018, 237, 166.

    272. [272]

      Zhang, Y.-Q.; Ma, D.-K.; Zhang, Y.-G.; Chen, W.; Huang, S.-M. Nano Energy 2013, 2, 545.

    273. [273]

      Chu, K. W.; Lee, S. L.; Chang, C. J.; Liu, L. Polymers 2019, 11, 689.

    274. [274]

      Zhu, C.; Liu, C. a.; Fu, Y.; Gao, J.; Huang, H.; Liu Y.; Kang, Z.; Appl. Catal. B 2019, 242, 178.

    275. [275]

      Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Mater. Chem. A 2014, 2, 3344.

    276. [276]

      Ong, W.-J.; Putri, L. K.; Tan, Y.-C.; Tan, L.-L.; Li, N.; Ng, Y. H.; Wen, X.; Chai, S.-P. Nano Res. 2017, 10, 1673.

    277. [277]

      Zeng, Z.; Chen, S.; Tan, T. T. Y.; Xiao, F.-X. Today 2018, 315, 171.

    278. [278]

      Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Energy Environ. Sci. 2014, 7, 1409.

    279. [279]

      Zhang, X.; Wang, F.; Huang, H.; Li, H. T.; Han, X.; Liu, Y.; Kang, Z. H. Nanoscale 2013, 5, 2274.

    280. [280]

      Nan, F.; Kang, Z.; Wang, J.; Shen, M.; Fang, L. Appl. Phys. Lett. 2015, 106, 153901.

    281. [281]

      Zhang, P.; Wang, T.; Chang, X.; Zhang, L.; Gong, J. Angew. Chem., Int. Ed. 2016, 55, 5851.

    282. [282]

      Li, H. T.; Liu, R. H.; Lian, S. Y.; Liu, Y.; Huang, H.; Kang, Z. H. Nanoscale 2013, 5, 3289.

    283. [283]

      Jiang, Z. Y.; Zhang, X. H.; Sun, W.; Yang, D. R.; Duchesne, P. N.; Gao, Y. G.; Wang, Z. Y.; Yan, T. J.; Yuan, Z. M.; Yang, G. H.; Ji, X. X.; Chen, J. C.; Huang, B. B.; Ozin, G. A. Angew. Chem., Int. Ed. 2019, 58, 14850.

    284. [284]

      Zhao, F. F.; Zhang, G. J.; Dong, H.; Ji, W. B.; Zhou, L.; Li, H.; Hu, H. L.; Liu, Y.; Kang, Z. H. CrystEngComm 2013, 15, 8483.

    285. [285]

      Wang, X.; Feng, Y.; Dong, P.; Huang, J. Front. Chem. 2019, 7, 671.

    286. [286]

      Liu, J.; Zhao, S.; Li, C.; Yang, M.; Yang, Y.; Liu, Y.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. Adv. Energy Mater. 2016, 6, 1502039.

    287. [287]

      Yang, Y. M.; Liu, J.; Han, Y. Z.; Huang, H.; Liu, N. Y.; Liu, Y.; Kang, Z. H. Phys. Chem. Chem. Phys. 2014, 16, 25350.

    288. [288]

      Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. ACS Appl. Mater. Interfaces 2014, 6, 7918.

    289. [289]

      Yang, Y.; Liu, J.; Guo, S.; Liu, Y.; Kang, Z. J. Mater. Chem. A 2015, 3, 18598.

    290. [290]

      Guo, S.; Yang, Y.; Liu, N.; Qiao, S.; Huang, H.; Liu, Y.; Kang, Z. Sci. Bull. 2016, 61, 68.

    291. [291]

      Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L. Angew. Chem. Int. Ed. 2020, 59, 1718.

    292. [292]

      Liu, Y.; Yang, Y.; Peng, Z.; Liu, Z.; Chen, Z.; Shang, L.; Lu, S.; Zhang, T. Nano Energy 2019, 65, 104023.

    293. [293]

      Liu L.; Corma, A. Chem. Rev. 2018, 118, 4981.

    294. [294]

      Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Nano Today 2018, 19, 201.

    295. [295]

      Qu, D.; Liu, J.; Miao, X.; Han, M.; Zhang, H.; Cui, Z.; Sun, S.; Kang, Z. H. Appl. Catal. B 2018, 227, 418.

    296. [296]

      Zhang, Z.; Liu, Y.; Wang, Q.; Wang, J. Acta Chim. Sinica 2019, 77, 179 (in Chinese).

    297. [297]

      Xi, Z.; Yuan, F.; Wang, Z.; Li, S.; Fan, L. Acta Chim. Sinica 2018, 76, 460 (in Chinese).

    298. [298]

      Zhao, K.; Hao, Y.; Zhu, M.; Cheng, G. Acta Chim. Sinica 2018, 76, 168 (in Chinese).

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(148)
  • Abstract views(6852)
  • HTML views(1284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return