Citation: Du Chongyang, Chen Yaofeng. ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block[J]. Acta Chimica Sinica, ;2020, 78(9): 938-944. doi: 10.6023/A20060268 shu

ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block

  • Corresponding author: Chen Yaofeng, yaofchen@mail.sioc.ac.cn
  • Received Date: 24 June 2020
    Available Online: 7 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21821002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the National Natural Science Foundation of China 21821002the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(1)

  • Fixation and transformation of CO2 are of the great importance, especially the conversion of CO2 into valuable organic compounds catalyzed by the cheap and biocompatible metal catalysts. Zinc is an abundant, biocompatible and environmentally friendly element. ZnEt2 is commercial available, and has been widely used as reducing or transmetalation agent in hydrocarboxylation of unsaturated hydrocarbons with CO2. In these reactions, ZnEt2 is generally used in stoichiometric amount or excess amout. This manuscript reports the hydrosilylation of CO2 into methoxysilane promoted by a catalytic amount of ZnEt2 (1.0 mol%), the ZnEt2 promoted formylation or urealation of amines with CO2 as a one-carbon (C1) building block is also described. The hydrosilylation of CO2 into methoxysilane (CH3OSi(OEt)3) with (EtO)3SiH as a hydrosilylation reagent is affected by CO2 pressure, ZnEt2 amount, reaction temperature and reaction time. Under the reaction conditions of 1.0 MPa CO2 (the initial CO2 pressure) and 1.0 mol% ZnEt2, the yield of methoxysilane is up to ca. 90% after 7 h at 90℃, and no solvent is used for this reaction. In the presence of organic amine, the reaction gives formamide or urea instead of methoxysilane. Under 1.5 MPa CO2, 1.0 mol% ZnEt2, 2.4 equiv. (EtO)3SiH and 100℃, a series of secondary amines, both the aromatic ones and the aliphatic ones, can be formylated into formamides. In the formylation of N-methylanilines with different substituents at para-position, the isolated yields of the formylation products are in the order of OMe≈Me>H>F>Cl≈Br>CF3>NO2, indicating the electron-donating group at the para-position of the N-methylanilines is benefit for the formylation reaction. When primary amines are used as the substrates, the reactions prefer to produce urea derivatives under the same reaction conditions. In the urealation reaction, the electronic effect is not as significant as that in the formylation reaction.
  • 加载中
    1. [1]

    2. [2]

      Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. Catal. Sci. Technol. 2014, 4, 611.  doi: 10.1039/C3CY00948C

    3. [3]

      (a) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.(b) Süss-Fink, G.; Reiner, J. Organomet. Chem. 1981, 221, C36.(c) Jansen, A.; Grls, H.; Pitter, S. Organometallics 2000, 19, 135.(d) Jansen, A.; Pitter, S. J. Mol. Catal. A:Chem. 2004, 217, 41.(e) Deglmann, P.; Ember, E.; Hofmann, P.; Pitter, S.; Walter, O. Chem.-Eur. J. 2007, 13, 2864.(f) Metsnen, T. T.; Oestreich, M. Organometallics 2015, 34, 543.

    4. [4]

      (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics 1989, 8, 1822.(b) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.(c) Lalrempuia, R.; Iglesias, M.; Polo, V.; Sanz Miguel, P. J.; Fernández-Alvarez, F. J.; Pérez-Torrente, J. J.; Oro, L. A. Angew. Chem., Int. Ed. 2012, 51, 12824.

    5. [5]

      (a) Huckaba, A. J.; Hollis, T. K.; Reilly, S. W. Organometallics 2013, 32, 6248.(b) Itagaki, S.; Yamaguchi, K.;Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.

    6. [6]

      Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463.  doi: 10.1021/ic501901n

    7. [7]

      (a) González-Sebastiaán, L.; Flores-Alamo, M.; García, J. J. Organometallics 2013, 32, 7186.(b) Ríos, P.; Curado, N.; López-Serrano, J.; Rodríguez, A. Chem. Commun. 2016, 52, 2114.(c) Singh, V.; Sakaki, S.; Deshmukh, M. M. Organometallics 2018, 37, 1258.

    8. [8]

      (a) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642.(b) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Chem.-Eur. J. 2013, 19, 10030.(c) Zhang, L.; Cheng, J.; Hou, Z. Chem. Commun. 2013, 49, 4782.(d) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.

    9. [9]

      (a) Mitton, S. J.; Turculet, L. Chem.-Eur. J. 2012, 18, 15258.(b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.

    10. [10]

      LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789.  doi: 10.1002/anie.201309094

    11. [11]

      Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362.  doi: 10.1021/ja0647250

    12. [12]

      Bertini, F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2019, 9, 632.  doi: 10.1021/acscatal.8b04106

    13. [13]

      (a) Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.(b) Rauch, M.; Strater, Z.; Parkin, G. J. Am. Chem. Soc. 2019, 141, 17754.

    14. [14]

      (a) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322.(b) Wehmschulte, R. J.; Saleh, M.; Powell, D. R. Organometallics 2013, 32, 6812.(c) Courtemanche, M. A.; Légaré, M. A.; Rochette, É.; Fontaine, F. G. Chem. Commun. 2015, 51, 6858.(d) Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 5321.

    15. [15]

      (a) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.(b) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. J. Am. Chem. Soc. 2013, 135, 7751.

    16. [16]

      (a) Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 1997(translated by Lindley, C. R.).(b) Peter, G. M. Wuts. Greene's Protective Groups in Organic Synthesis, 5th ed., Wiley-VCH, Weinheim, 2014.

    17. [17]

      (a) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392.(b) Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton Trans. 2015, 44, 18138.(c) Zhang, S.; Mei, Q. Q.; Liu, H. Y.; Liu, H. Z.; Zhang, Z. P.; Han, B. X. RSC Adv., 2016, 6, 32370.(d) Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci China Chem. 2019, 62, 256.

    18. [18]

      (a) Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939.(b) Cui, X. J.; Zhang, Y.; Deng, Y. Q,; Shi, F. Chem. Commun. 2014, 50, 13521.(c) Luo, X. Y.; Zhang, H. Y.; Ke, Z. G.; Wu, C. L.; Guo, S. E.; Wu, Y. Y.; Yu, B.; Liu, Z. M. Sci. China Chem. 2018, 61, 725.

    19. [19]

      (a) Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.(b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.(c) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344.(d) Schmid, L.; Canonica, A.; Baiker, A. Appl. Catal. A 2003, 255, 23.(e) Munshi, P.; Heldebrant, D. J.; McKoon, E. P.; Kelly, P. A.; Tai, C. C.; Jessop, P. G. Tetrahedron Lett. 2003, 44, 2725.(f) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. L. Angew. Chem. Int. Ed. 2015, 54, 6186.(g) Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.

    20. [20]

      (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777.(b) Frogneux, X.; Jacquet O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529.(c) Jayarathne, U.; Hazariand, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.

    21. [21]

      (a) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; BenDavid, Y.; Milstein, D. ACS Catal. 2017, 7, 2500.(b) Ke, Z. G.; Yang, Z. Z.; Liu, Z. H.; Yu, B.; Zhao, Y. F.; Guo, S. E.; Wu, Y. Y.; Liu, Z. M. Org. Lett. 2018, 20, 6622.

    22. [22]

      (a) Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.(b) Nguyen, T. V. Q.; Yoo, W. J.; Kobayashi, S. Angew. Chem. Int. Ed. 2015, 54, 9209.(c) Lam, R. H.; McQueen, C. M. A.; Pernik, I.; McBurney, R. T.; Hill, A. F.; Messerle, B. A. Green Chem. 2019, 21, 538.

    23. [23]

      González-Sebastián, L.; Flores-Alamo, M.; García, M. Organometallics 2015, 34, 763.  doi: 10.1021/om501176u

    24. [24]

      (a) Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. ChemCatChem 2017, 9, 3632.(b) Tang, G.; Bao, H. L.; Jin, C.; Zhong, X. H.; Du, X. L. RSC Adv. 2015, 5, 99678.

    25. [25]

      (a) Fang, C.; Lu, C. L.; Liu, M. H.; Zhu, Y. L.; Fu, Y.; Lin, B. L. ACS Catal. 2016, 6, 7876.(b) Nale, D. B.; Bhanage, B. M. Synlett 2016, 27, 1413.

    26. [26]

      (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.(b) Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Chem. Commun. 2016, 52, 2497.(c) Hao, L. D.; Zhao, Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Han, B. X.; Gao, X.; Liu, Z. M. ACS Catal. 2015, 5, 4989.(d) Zhao, W. F.; Chi, X. P.; Li, H.; He, J.; Long, J. X.; Xu, Y. F.; Yang, S. Green Chem. 2019, 21, 567.(e) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem, Int. Ed. 2017, 56, 7425.(f) Lv, H.; Xing, Q.; Yue, C. T.; Lei Z. Q.; Li, F. W. Chem. Commun. 2016, 52, 6545.(g) Zhao, T. X.; Zhai, G. W.; Liang, J.; Li, P.; Hu X. B.; Wu, Y. T. Chem. Commun. 2017, 53, 8046.(h) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187.(i) Liu, X. F.; Li, X. Y.; Qiao, C.; He, L. N. Synlett 2018, 29, 548.(j) Wang, M. Y.; Wang, N.; Liu, X. F.; Qiao, C.; He, L. N. Green Chem. 2018, 20, 1564.(k) Liu, X. F.; Ma, R.; Qiao, C.; Cao H.; He, L. N. Chem. Eur. J. 2016, 22, 16489.(l) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. Int. Ed. 2017, 56, 7425.

    27. [27]

      Shi, F.; Zhang, Q. H.; Ma, Y. B.; He, Y.; Deng, Y. Q. J. Am. Chem. Soc. 2005, 127, 4182.  doi: 10.1021/ja042207o

    28. [28]

      (a) Shi, F.; Deng, Y. Q.; SiMa, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T. Angew. Chem. Int. Ed. 2003, 42, 3257.(b) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9, 158.

    29. [29]

      Tamura, M.; Ito, K.; Nakagawa, Y.; Tomishige, K. J. Catal. 2016, 343, 75.  doi: 10.1016/j.jcat.2015.11.015

    30. [30]

      Jurado-Vazquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162.  doi: 10.1007/s10562-018-2305-8

    31. [31]

      Xu, M. T.; Jupp, A. R.; Stephan, D. W. Angew. Chem. Int. Ed. 2017, 56, 14277.  doi: 10.1002/anie.201708921

    32. [32]

      Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T. Synthesis 1978, 394.
       

    33. [33]

      Cooper, C. F.; Falcone, S. J. Synth. Commun. 1995, 25, 2467.  doi: 10.1080/00397919508015452

    34. [34]

      Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191.
       

    35. [35]

      Enthaler, S.; Wu, X. F. Zinc Catalysis:Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2015.
       

    36. [36]

      (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.(b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.(c) Shimizu, K.; Sato, Y.; Mori, M.; Takimoto, M. Org. Lett. 2005, 7, 195.(d) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.(e) Li, S.; Yuan, W.; Ma, S. M. Angew. Chem., Int. Ed. 2011, 50, 2578.(f) Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147.

    37. [37]

      (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018.(b) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.(c) Xiao, Y. L.; Wang, Z.; Ding, K. L. Chem. Eur. J. 2005, 11, 3668.(d) Reiter, M.; Vagin, S.; Kronast, A.; Jandl, C.; Rieger, B. Chem. Sci. 2017, 8, 1876.

    38. [38]

      (a) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462.(b) Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.(c) Rit, A.; Zanardi, A.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2014, 53, 13273.(d) Specklin, D.; Fliedel, C.; Gourlaouen, C.; Bruyere, J. C.; Avilés, T.; Boudon, C.; Ruhlmann, L.; Dagorne, S. Chem.-Eur. J. 2017, 23, 5509.(e) Specklin, D.; Hild, F.; Fliedel, C.; Gourlaouen, C.; Veiros, L. F.; Dagorne, S. Chem.-Eur. J. 2017, 23, 15908.(f) Tüchler, M.; Grtner, L.; Fischer, S.; Boese, A. D.; Belaj, F.; Msch-Zanetti, N. C. Angew. Chem. Int. Ed. 2018, 57, 6906.

    39. [39]

      Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. Chem. Sci. 2013, 4, 2127.  doi: 10.1039/c3sc22240c

    40. [40]

      Luo, R. C.; Lin, X. W.; Chen, Y. J.; Zhang, W. Y.; Zhou, X. T.; Ji, H. B. ChemSusChem 2017, 10, 1224.  doi: 10.1002/cssc.201601490

    41. [41]

      Feng, G. Q.; Du, C. Y.; Xiang, L.; Rosal, I. D.; Li, G. Y.; Leng, X. B.; Chen, E. Y.-X.; Maron, L.; Chen, Y. F. ACS Catal. 2018, 8, 4710.  doi: 10.1021/acscatal.8b01033

    42. [42]

      Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.  doi: 10.1002/cjoc.202000072

    43. [43]

      George, H. W. US 2530367, 1950[Chem. Abstr. 1950, 66, 790230].
       

    44. [44]

      Dobrovetsky, R.; Stephan, D. W. Isr. J. Chem. 2015, 55, 206.  doi: 10.1002/ijch.201400121

    45. [45]

      Heyn, H. H. Advances in Inorganic Chemistry, Vol. 66, Eds.:Jacobs, I.; Carr, R. H., Elsevier, 2014, Chapter three, pp. 83~115.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    11. [11]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(6)
  • Abstract views(2715)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return