Citation: Wang Wenbin, Wen Qunlei, Liu Youwen, Zhai Tianyou. Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion[J]. Acta Chimica Sinica, ;2020, 78(11): 1185-1199. doi: 10.6023/A20060265 shu

Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion

  • Corresponding author: Liu Youwen, ywliu@hust.edu.cn Zhai Tianyou, zhaity@hust.edu.cn
  • Received Date: 24 June 2020
    Available Online: 5 August 2020

    Fund Project: the Hubei Provincial Natural Science Foundation of China 2019CFA002Project supported by the National Natural Science Foundation of China (Nos. 21805102, 21825103, 51727809) and the Hubei Provincial Natural Science Foundation of China (No. 2019CFA002)the National Natural Science Foundation of China 21825103the National Natural Science Foundation of China 51727809the National Natural Science Foundation of China 21805102

Figures(10)

  • Electrocatalytic biomass conversion, which utilizing the electrical energy generated by intermittent energy, drive biomass into high value-added organic chemicals, and usually can be coupled with water splitting for the production of high-purity hydrogen. It has the potential to significantly decrease fossil fuel consumption, optimize energy structure and solve environmental issues. However, because biomass possess multiple groups and its conversion involves multiple electrons, electrocatalytic biomass conversion suffer from low conversion efficiency, bad selectivity and poor stability. Surface and interface chemistry engineering, such as regulating intrinsic structure, generating vacancies, introducing heteroatom, and constructing synergistic interface, can design and modify two-dimensional electrocatalysts to optimize their electronic structure and geometric structure, and effectively improve the electrocatalytic efficiency, selectivity and stability. This review provides an overview of recent advances about the role of surface and interface chemistry played on electrocatalytic biomass conversion of two-dimensional materials. In addition, the authors also give some perspectives on the challenges and prospects in this field.
  • 加载中
    1. [1]

      Luna, P. D.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506.  doi: 10.1126/science.aav3506

    2. [2]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998.  doi: 10.1126/science.aad4998

    3. [3]

      Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216.  doi: 10.1039/C8CY00533H

    4. [4]

      Li, Z.; Luo, Y.; Jiang, Z.; Fang, Q.; Hu, C. Chin. J. Chem. 2020, 38, 178.  doi: 10.1002/cjoc.201900433

    5. [5]

      Li, C.; Zhang, Q.; Fu, Y. Acta Chim. Sinica. 2018, 76, 501.
       

    6. [6]

      Liu, R. Y.; Bae, M.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 1627.  doi: 10.1021/jacs.8b00643

    7. [7]

      Sun, J.; Wang, Y. ACS Catal. 2014, 4, 1078.  doi: 10.1021/cs4011343

    8. [8]

      Chen, Y.; Liu, H.; Cheng, Y.; Xie, Q. Acta Chim. Sinica. 2020, 78, 330.
       

    9. [9]

      Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica. 2020, 78, 289.
       

    10. [10]

      Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F.; Han, G.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. Chem 2018, 4, 637.  doi: 10.1016/j.chempr.2017.12.019

    11. [11]

      Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.  doi: 10.1002/cjoc.201900113

    12. [12]

      You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639.  doi: 10.1021/jacs.6b07127

    13. [13]

      Chi, J.; Yu, H. Chin. J. Catal. 2018, 39, 390.

    14. [14]

      Cheng, P.-F.; Feng, T.; Liu, Z.-W.; Wu, D.-Y.; Yang, J. Chin. J. Catal. 2019, 40, 1147.

    15. [15]

      Hang-shuo, L.; Xiao-bo, H.; Feng-xiang, Y.; Guo-ru, L. J. Electrochem. 2020, 26, 136.

    16. [16]

      You, H.; Zhuo, Z.; Lu, X.; Liu, Y.; Guo, Y.; Wang, W.; Yang, H.; Wu, X.; Li, H.; Zhai, T. CCS Chem. 2019, 1, 396.  doi: 10.31635/ccschem.019.20190022

    17. [17]

      Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Nat. Mater. 2016, 16, 70.

    18. [18]

      Zhang, P.; Sun, L. Chin. J. Chem. 2020, 38, 996.  doi: 10.1002/cjoc.201900467

    19. [19]

      Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Chem 2018, 4, 1263.  doi: 10.1016/j.chempr.2018.02.006

    20. [20]

      Liu, Y.; Hua, X.; Xiao, C.; Zhou, T.; Huang, P.; Guo, Z.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2016, 138, 5087.  doi: 10.1021/jacs.6b00858

    21. [21]

      Zhu, W.; Ren, M.; Hu, N.; Zhang, W.; Luo, Z.; Wang, R.; Wang, J.; Huang, L.; Suo, Y.; Wang, J. ACS Sustainable Chem. Eng. 2018, 6, 5011.  doi: 10.1021/acssuschemeng.7b04663

    22. [22]

      Li, Y.; Lu, J.; Wang, X.; Zhang, H.; Wu, X.; Zhang, K. H. L.; Ye, J.; Zhan, D. ChemCatChem 2019, 11, 2277.  doi: 10.1002/cctc.201900437

    23. [23]

      Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. Angew. Chem. Int. Ed. 2018, 57, 17168.  doi: 10.1002/anie.201810960

    24. [24]

      Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z.; Lin, Z.; Xiang, B.; Liu, X.; Zhao, K.; Liao, X.; Yang, W.; Cheng, Y.-B.; Mai, L. Adv. Energy Mater. 2019, 9, 1900390.  doi: 10.1002/aenm.201900390

    25. [25]

      Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 244, 1096.  doi: 10.1016/j.apcatb.2018.12.038

    26. [26]

      Yang, W.; Yang, X.; Hou, C.; Li, B.; Gao, H.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 259, 118020.  doi: 10.1016/j.apcatb.2019.118020

    27. [27]

      Wang, W.; Zhu, Y.-B.; Wen, Q.; Wang, Y.; Xia, J.; Li, C.; Chen, M.-W.; Liu, Y.; Li, H.; Wu, H.-A.; Zhai, T. Adv. Mater. 2019, 31, 1900528.  doi: 10.1002/adma.201900528

    28. [28]

      Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2016, 55, 12465.  doi: 10.1002/anie.201606313

    29. [29]

      Li, K.; Sun, Y. Chem. Eur. J. 2018, 24, 18258.  doi: 10.1002/chem.201803319

    30. [30]

      Chen, L.; Shi, J. J. Mater. Chem. A. 2018, 6, 13538.  doi: 10.1039/C8TA03741H

    31. [31]

      Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H. Energy Environ. Sci. 2018, 11, 1890.  doi: 10.1039/C8EE00521D

    32. [32]

      Boggs, B. K.; King, R. L.; Botte, G. G. Chem. Commun. 2009, 32, 4859.

    33. [33]

      Chen, S.; Duan, J.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2016, 55, 3804.  doi: 10.1002/anie.201600387

    34. [34]

      Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Adv. Energy Mater. 2018, 8, 1801775.  doi: 10.1002/aenm.201801775

    35. [35]

      Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842.  doi: 10.1002/anie.201608899

    36. [36]

      Wu, L.-S.; Dai, H.-B.; Wen, X.-P.; Wang, P. ChemElectroChem 2017, 4, 1944.  doi: 10.1002/celc.201700234

    37. [37]

      Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41, 4754.  doi: 10.1039/C7NJ00326A

    38. [38]

      Wang, Y.; Chen, Z.; Wu, H.; Xiao, F.; Cao, E.; Du, S.; Wu, Y.; Ren, Z. ACS Sustainable Chem. Eng. 2018, 6, 15727.  doi: 10.1021/acssuschemeng.8b04274

    39. [39]

      Liu, M.; Zhang, R.; Zhang, L.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R.; Sun, X. Inorg. Chem. Front. 2017, 4, 420.  doi: 10.1039/C6QI00384B

    40. [40]

      Sun, H.; Ye, Y.; Liu, J.; Tian, Z.; Cai, Y.; Li, P.; Liang, C. Chem. Commun. 2018, 54, 1563.  doi: 10.1039/C7CC09361F

    41. [41]

      Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. ACS Catal. 2017, 8, 526.

    42. [42]

      Fu, W.; Li, Y.; Liang, C. Acta Chim. Sinica. 2019, 77, 559.
       

    43. [43]

      Wu, K.; Zhou, Y.; Ma, X.; Ding, C.; Cai, W. Acta Chim. Sinica. 2018, 76, 292.
       

    44. [44]

      Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19, 1958.  doi: 10.1039/C7GC00371D

    45. [45]

      Bott-Neto, J. L.; Martins, T. S.; Machado, S. r. A. S.; Ticianelli, E. A. ACS Appl. Mater. Interfaces 2019, 11, 30810.  doi: 10.1021/acsami.9b08441

    46. [46]

      You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564.  doi: 10.1021/acscatal.7b00876

    47. [47]

      Yin, Z.; Zheng, Y.; Wang, H.; Li, J.; Zhu, Q.; Wang, Y.; Ma, N.; Hu, G.; He, B.; Knop-Gericke, A.; Schlogl, R.; Ma, D. ACS Nano 2017, 11, 12365.  doi: 10.1021/acsnano.7b06287

    48. [48]

      Zheng, J.; Chen, X.; Zhong, X.; Li, S.; Liu, T.; Zhuang, G.; Li, X.; Deng, S.; Mei, D.; Wang, J.-G. Adv. Funct. Mater. 2017, 27, 1704169.  doi: 10.1002/adfm.201704169

    49. [49]

      Zhang, X.; Han, M.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. App. Catal. B:Environ. 2019, 244, 899.  doi: 10.1016/j.apcatb.2018.12.025

    50. [50]

      Nam, D.-H.; Taitt, B. J.; Choi, K.-S. ACS Catal. 2018, 8, 1197.  doi: 10.1021/acscatal.7b03152

    51. [51]

      Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533.  doi: 10.1021/acscatal.8b01017

    52. [52]

      Du, P.; Zhang, J.; Liu, Y.; Huang, M. Electrochem. Commun. 2017, 83, 11.  doi: 10.1016/j.elecom.2017.08.013

    53. [53]

      Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; Huber, G. W.; Yu, H. Q. Nat. Commun. 2020, 11, 265.  doi: 10.1038/s41467-019-14157-3

    54. [54]

      Miao, J.; Teng, X.; Zhang, R.; Guo, P.; Chen, Y.; Zhou, X.; Wang, H.; Sun, X.; Zhang, L. App. Catal. B:Environ. 2020, 263, 118109.  doi: 10.1016/j.apcatb.2019.118109

    55. [55]

      Ding, Y.; Miao, B.-Q.; Li, S.-N.; Jiang, Y.-C.; Liu, Y.-Y.; Yao, H.-C.; Chen, Y. App. Catal. B:Environ. 2020, 268, 118393.  doi: 10.1016/j.apcatb.2019.118393

    56. [56]

      Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163.  doi: 10.1002/anie.201807717

    57. [57]

      Lum, Y.; Huang, J. E.; Wang, Z.; Luo, M.; Nam, D.-H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C.-T.; Li, J.; Zhuang, T.-T.; Li, F.; Sham, T.-K.; Sinton, D.; Sargent, E. H. Nat. Catal. 2020, 3, 14.  doi: 10.1038/s41929-019-0386-4

    58. [58]

      Zhou, Y.; Gao, Y.; Zhong, X.; Jiang, W.; Liang, Y.; Niu, P.; Li, M.; Zhuang, G.; Li, X.; Wang, J. Adv. Funct. Mater. 2019, 29, 1807651.  doi: 10.1002/adfm.201807651

    59. [59]

      Zhang, B.; Huang, C.; Huang, Y.; Liu, C.; Chong, X. Natl. Sci. Rev. 2020, 7, 285.  doi: 10.1093/nsr/nwz146

    60. [60]

      Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. App. Catal. B:Environ. 2020, 265, 118543.  doi: 10.1016/j.apcatb.2019.118543

    61. [61]

      Dai, L.; Qin, Q.; Zhao, X.; Xu, C.; Hu, C.; Mo, S.; Wang, Y. O.; Lin, S.; Tang, Z.; Zheng, N. ACS Cent. Sci. 2016, 2, 538.  doi: 10.1021/acscentsci.6b00164

    62. [62]

      Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895.  doi: 10.1002/anie.201908722

    63. [63]

      Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335.  doi: 10.1038/s41467-019-13375-z

    64. [64]

      Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423.

    65. [65]

      Li, Y.; Jiang, Y.; Jiang, P.; Du, S.; Jiang, J.; Leng, Y. Acta Chim. Sinica. 2019, 77, 66.
       

    66. [66]

      Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica. 2020, 78, 256.
       

    67. [67]

      Zhang, Y.; Duan, H.-X.; Wang, Y.-Q. Chin. J. Org. Chem. 2020, 40, 1514.

    68. [68]

      Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; Arquer, F. P. G. d.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.; Regier, T.; Liu, P.; Li, Y.; Luna, P. D.; Janmohamed, A.; Xin, H. L.; Yang, H.; Vojvodic, A.; Sargent, E. H. Science 2016, 352, 333.  doi: 10.1126/science.aaf1525

    69. [69]

      Tan, C.; Luo, Z.; Chaturvedi, A.; Cai, Y.; Du, Y.; Gong, Y.; Huang, Y.; Lai, Z.; Zhang, X.; Zheng, L.; Qi, X.; Goh, M. H.; Wang, J.; Han, S.; Wu, X. J.; Gu, L.; Kloc, C.; Zhang, H. Adv. Mater. 2018, 30, 1705509.  doi: 10.1002/adma.201705509

    70. [70]

      Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. J. Am. Chem. Soc. 2015, 137, 3638.  doi: 10.1021/jacs.5b00281

    71. [71]

      Zhang, J. Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Angew. Chem. Int. Ed. 2018, 57, 7649.  doi: 10.1002/anie.201803543

    72. [72]

      Gao, Y.; Wang, Q.; He, T.; Zhang, J.-Y.; Sun, H.; Zhao, B.; Xia, B. Y.; Yan, Y.; Chen, Y. Inorg. Chem. Front. 2019, 6, 2686.  doi: 10.1039/C9QI01005J

    73. [73]

      Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546.  doi: 10.1002/adma.201701546

    74. [74]

      Jia, X.; Zhang, X.; Zhao, J.; Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Shi, R.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Energy Chem. 2019, 34, 57.  doi: 10.1016/j.jechem.2018.09.011

    75. [75]

      Dou, S.; Tao, L.; Wang, R.; El Hankari, S.; Chen, R.; Wang, S. Adv. Mater. 2018, 30, 1705850.  doi: 10.1002/adma.201705850

    76. [76]

      Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746.  doi: 10.1126/science.1200448

    77. [77]

      Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S. J. Am. Chem. Soc. 2016, 138, 7965.  doi: 10.1021/jacs.6b03714

    78. [78]

      He, Q.; Wan, Y.; Jiang, H.; Pan, Z.; Wu, C.; Wang, M.; Wu, X.; Ye, B.; Ajayan, P. M.; Song, L. ACS Energy Lett. 2018, 3, 1373.  doi: 10.1021/acsenergylett.8b00515

    79. [79]

      Zhang, L.; Wang, L.; Lin, H.; Liu, Y.; Ye, J.; Wen, Y.; Chen, A.; Wang, L.; Ni, F.; Zhou, Z.; Sun, S.; Li, Y.; Zhang, B.; Peng, H. Angew. Chem. Int. Ed. 2019, 58, 16820.  doi: 10.1002/anie.201909832

    80. [80]

      Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. Adv. Energy Mater. 2019, 9, 1900881.  doi: 10.1002/aenm.201900881

    81. [81]

      Wang, W.; Wang, Y.; Yang, R.; Wen, Q.; Liu, Y.; Jiang, Z.; Li, H.; Zhai, T. Angew. Chem. Int. Ed. 2020, 59, 16974.  doi: 10.1002/anie.202005574

    82. [82]

      Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I. N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2018, 8, 1703585.  doi: 10.1002/aenm.201703585

    83. [83]

      Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P.; Duan, Y.; Ma, T.; Zheng, X. S.; Zhu, J. F.; Wang, H. J.; Gao, M. R.; Yu, S. H. J. Am. Chem. Soc. 2020, 142, 6400.  doi: 10.1021/jacs.0c01699

    84. [84]

      Du, C. F.; Sun, X.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y.; Li, S.; Liu, X.; Yan, Q. InfoMat. 2020, 2, 950.  doi: 10.1002/inf2.12078

    85. [85]

      Wu, Y.; Liu, X.; Han, D.; Song, X.; Shi, L.; Song, Y.; Niu, S.; Xie, Y.; Cai, J.; Wu, S.; Kang, J.; Zhou, J.; Chen, Z.; Zheng, X.; Xiao, X.; Wang, G. Nat.Commun. 2018, 9, 1425.  doi: 10.1038/s41467-018-03858-w

    86. [86]

      Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019, 55, 37.  doi: 10.1016/j.nanoen.2018.10.050

    87. [87]

      Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. Adv. Energy Mater. 2017, 7, 1700020.  doi: 10.1002/aenm.201700020

    88. [88]

      Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica. 2020, 78, 355.
       

    89. [89]

      Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Adv. Funct. Mater. 2020, 30, 2000556.  doi: 10.1002/adfm.202000556

    90. [90]

      Huang, W.; Ma, X. Y.; Wang, H.; Feng, R.; Zhou, J.; Duchesne, P. N.; Zhang, P.; Chen, F.; Han, N.; Zhao, F.; Zhou, J.; Cai, W. B.; Li, Y. Adv. Mater. 2017, 29, 1703057.  doi: 10.1002/adma.201703057

    91. [91]

      Han, Y.; Li, P.; Liu, J.; Wu, S.; Ye, Y.; Tian, Z.; Liang, C. Sci. Rep. 2018, 8, 1359.  doi: 10.1038/s41598-018-19876-z

    92. [92]

      Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; Zhong, J.; Jin, C.; Li, Y.; Lee, S. T.; Dai, H. Nat. Commun. 2015, 6, 10035.  doi: 10.1038/ncomms10035

    93. [93]

      Yue, X.; Li, L.; Li, P.; Luo, C.; Pu, M.; Yang, Z.; Lei, M. Chin. J. Chem. 2019, 37, 883.  doi: 10.1002/cjoc.201900150

  • 加载中
    1. [1]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(44)
  • Abstract views(2035)
  • HTML views(513)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return