Citation: Wang Wenbin, Wen Qunlei, Liu Youwen, Zhai Tianyou. Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion[J]. Acta Chimica Sinica, ;2020, 78(11): 1185-1199. doi: 10.6023/A20060265 shu

Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion

  • Corresponding author: Liu Youwen, ywliu@hust.edu.cn Zhai Tianyou, zhaity@hust.edu.cn
  • Received Date: 24 June 2020
    Available Online: 5 August 2020

    Fund Project: the Hubei Provincial Natural Science Foundation of China 2019CFA002Project supported by the National Natural Science Foundation of China (Nos. 21805102, 21825103, 51727809) and the Hubei Provincial Natural Science Foundation of China (No. 2019CFA002)the National Natural Science Foundation of China 21825103the National Natural Science Foundation of China 51727809the National Natural Science Foundation of China 21805102

Figures(10)

  • Electrocatalytic biomass conversion, which utilizing the electrical energy generated by intermittent energy, drive biomass into high value-added organic chemicals, and usually can be coupled with water splitting for the production of high-purity hydrogen. It has the potential to significantly decrease fossil fuel consumption, optimize energy structure and solve environmental issues. However, because biomass possess multiple groups and its conversion involves multiple electrons, electrocatalytic biomass conversion suffer from low conversion efficiency, bad selectivity and poor stability. Surface and interface chemistry engineering, such as regulating intrinsic structure, generating vacancies, introducing heteroatom, and constructing synergistic interface, can design and modify two-dimensional electrocatalysts to optimize their electronic structure and geometric structure, and effectively improve the electrocatalytic efficiency, selectivity and stability. This review provides an overview of recent advances about the role of surface and interface chemistry played on electrocatalytic biomass conversion of two-dimensional materials. In addition, the authors also give some perspectives on the challenges and prospects in this field.
  • 加载中
    1. [1]

      Luna, P. D.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506.  doi: 10.1126/science.aav3506

    2. [2]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998.  doi: 10.1126/science.aad4998

    3. [3]

      Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216.  doi: 10.1039/C8CY00533H

    4. [4]

      Li, Z.; Luo, Y.; Jiang, Z.; Fang, Q.; Hu, C. Chin. J. Chem. 2020, 38, 178.  doi: 10.1002/cjoc.201900433

    5. [5]

      Li, C.; Zhang, Q.; Fu, Y. Acta Chim. Sinica. 2018, 76, 501.
       

    6. [6]

      Liu, R. Y.; Bae, M.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 1627.  doi: 10.1021/jacs.8b00643

    7. [7]

      Sun, J.; Wang, Y. ACS Catal. 2014, 4, 1078.  doi: 10.1021/cs4011343

    8. [8]

      Chen, Y.; Liu, H.; Cheng, Y.; Xie, Q. Acta Chim. Sinica. 2020, 78, 330.
       

    9. [9]

      Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica. 2020, 78, 289.
       

    10. [10]

      Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F.; Han, G.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. Chem 2018, 4, 637.  doi: 10.1016/j.chempr.2017.12.019

    11. [11]

      Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.  doi: 10.1002/cjoc.201900113

    12. [12]

      You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639.  doi: 10.1021/jacs.6b07127

    13. [13]

      Chi, J.; Yu, H. Chin. J. Catal. 2018, 39, 390.

    14. [14]

      Cheng, P.-F.; Feng, T.; Liu, Z.-W.; Wu, D.-Y.; Yang, J. Chin. J. Catal. 2019, 40, 1147.

    15. [15]

      Hang-shuo, L.; Xiao-bo, H.; Feng-xiang, Y.; Guo-ru, L. J. Electrochem. 2020, 26, 136.

    16. [16]

      You, H.; Zhuo, Z.; Lu, X.; Liu, Y.; Guo, Y.; Wang, W.; Yang, H.; Wu, X.; Li, H.; Zhai, T. CCS Chem. 2019, 1, 396.  doi: 10.31635/ccschem.019.20190022

    17. [17]

      Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Nat. Mater. 2016, 16, 70.

    18. [18]

      Zhang, P.; Sun, L. Chin. J. Chem. 2020, 38, 996.  doi: 10.1002/cjoc.201900467

    19. [19]

      Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Chem 2018, 4, 1263.  doi: 10.1016/j.chempr.2018.02.006

    20. [20]

      Liu, Y.; Hua, X.; Xiao, C.; Zhou, T.; Huang, P.; Guo, Z.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2016, 138, 5087.  doi: 10.1021/jacs.6b00858

    21. [21]

      Zhu, W.; Ren, M.; Hu, N.; Zhang, W.; Luo, Z.; Wang, R.; Wang, J.; Huang, L.; Suo, Y.; Wang, J. ACS Sustainable Chem. Eng. 2018, 6, 5011.  doi: 10.1021/acssuschemeng.7b04663

    22. [22]

      Li, Y.; Lu, J.; Wang, X.; Zhang, H.; Wu, X.; Zhang, K. H. L.; Ye, J.; Zhan, D. ChemCatChem 2019, 11, 2277.  doi: 10.1002/cctc.201900437

    23. [23]

      Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. Angew. Chem. Int. Ed. 2018, 57, 17168.  doi: 10.1002/anie.201810960

    24. [24]

      Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z.; Lin, Z.; Xiang, B.; Liu, X.; Zhao, K.; Liao, X.; Yang, W.; Cheng, Y.-B.; Mai, L. Adv. Energy Mater. 2019, 9, 1900390.  doi: 10.1002/aenm.201900390

    25. [25]

      Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 244, 1096.  doi: 10.1016/j.apcatb.2018.12.038

    26. [26]

      Yang, W.; Yang, X.; Hou, C.; Li, B.; Gao, H.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 259, 118020.  doi: 10.1016/j.apcatb.2019.118020

    27. [27]

      Wang, W.; Zhu, Y.-B.; Wen, Q.; Wang, Y.; Xia, J.; Li, C.; Chen, M.-W.; Liu, Y.; Li, H.; Wu, H.-A.; Zhai, T. Adv. Mater. 2019, 31, 1900528.  doi: 10.1002/adma.201900528

    28. [28]

      Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2016, 55, 12465.  doi: 10.1002/anie.201606313

    29. [29]

      Li, K.; Sun, Y. Chem. Eur. J. 2018, 24, 18258.  doi: 10.1002/chem.201803319

    30. [30]

      Chen, L.; Shi, J. J. Mater. Chem. A. 2018, 6, 13538.  doi: 10.1039/C8TA03741H

    31. [31]

      Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H. Energy Environ. Sci. 2018, 11, 1890.  doi: 10.1039/C8EE00521D

    32. [32]

      Boggs, B. K.; King, R. L.; Botte, G. G. Chem. Commun. 2009, 32, 4859.

    33. [33]

      Chen, S.; Duan, J.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2016, 55, 3804.  doi: 10.1002/anie.201600387

    34. [34]

      Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Adv. Energy Mater. 2018, 8, 1801775.  doi: 10.1002/aenm.201801775

    35. [35]

      Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842.  doi: 10.1002/anie.201608899

    36. [36]

      Wu, L.-S.; Dai, H.-B.; Wen, X.-P.; Wang, P. ChemElectroChem 2017, 4, 1944.  doi: 10.1002/celc.201700234

    37. [37]

      Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41, 4754.  doi: 10.1039/C7NJ00326A

    38. [38]

      Wang, Y.; Chen, Z.; Wu, H.; Xiao, F.; Cao, E.; Du, S.; Wu, Y.; Ren, Z. ACS Sustainable Chem. Eng. 2018, 6, 15727.  doi: 10.1021/acssuschemeng.8b04274

    39. [39]

      Liu, M.; Zhang, R.; Zhang, L.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R.; Sun, X. Inorg. Chem. Front. 2017, 4, 420.  doi: 10.1039/C6QI00384B

    40. [40]

      Sun, H.; Ye, Y.; Liu, J.; Tian, Z.; Cai, Y.; Li, P.; Liang, C. Chem. Commun. 2018, 54, 1563.  doi: 10.1039/C7CC09361F

    41. [41]

      Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. ACS Catal. 2017, 8, 526.

    42. [42]

      Fu, W.; Li, Y.; Liang, C. Acta Chim. Sinica. 2019, 77, 559.
       

    43. [43]

      Wu, K.; Zhou, Y.; Ma, X.; Ding, C.; Cai, W. Acta Chim. Sinica. 2018, 76, 292.
       

    44. [44]

      Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19, 1958.  doi: 10.1039/C7GC00371D

    45. [45]

      Bott-Neto, J. L.; Martins, T. S.; Machado, S. r. A. S.; Ticianelli, E. A. ACS Appl. Mater. Interfaces 2019, 11, 30810.  doi: 10.1021/acsami.9b08441

    46. [46]

      You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564.  doi: 10.1021/acscatal.7b00876

    47. [47]

      Yin, Z.; Zheng, Y.; Wang, H.; Li, J.; Zhu, Q.; Wang, Y.; Ma, N.; Hu, G.; He, B.; Knop-Gericke, A.; Schlogl, R.; Ma, D. ACS Nano 2017, 11, 12365.  doi: 10.1021/acsnano.7b06287

    48. [48]

      Zheng, J.; Chen, X.; Zhong, X.; Li, S.; Liu, T.; Zhuang, G.; Li, X.; Deng, S.; Mei, D.; Wang, J.-G. Adv. Funct. Mater. 2017, 27, 1704169.  doi: 10.1002/adfm.201704169

    49. [49]

      Zhang, X.; Han, M.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. App. Catal. B:Environ. 2019, 244, 899.  doi: 10.1016/j.apcatb.2018.12.025

    50. [50]

      Nam, D.-H.; Taitt, B. J.; Choi, K.-S. ACS Catal. 2018, 8, 1197.  doi: 10.1021/acscatal.7b03152

    51. [51]

      Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533.  doi: 10.1021/acscatal.8b01017

    52. [52]

      Du, P.; Zhang, J.; Liu, Y.; Huang, M. Electrochem. Commun. 2017, 83, 11.  doi: 10.1016/j.elecom.2017.08.013

    53. [53]

      Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; Huber, G. W.; Yu, H. Q. Nat. Commun. 2020, 11, 265.  doi: 10.1038/s41467-019-14157-3

    54. [54]

      Miao, J.; Teng, X.; Zhang, R.; Guo, P.; Chen, Y.; Zhou, X.; Wang, H.; Sun, X.; Zhang, L. App. Catal. B:Environ. 2020, 263, 118109.  doi: 10.1016/j.apcatb.2019.118109

    55. [55]

      Ding, Y.; Miao, B.-Q.; Li, S.-N.; Jiang, Y.-C.; Liu, Y.-Y.; Yao, H.-C.; Chen, Y. App. Catal. B:Environ. 2020, 268, 118393.  doi: 10.1016/j.apcatb.2019.118393

    56. [56]

      Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163.  doi: 10.1002/anie.201807717

    57. [57]

      Lum, Y.; Huang, J. E.; Wang, Z.; Luo, M.; Nam, D.-H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C.-T.; Li, J.; Zhuang, T.-T.; Li, F.; Sham, T.-K.; Sinton, D.; Sargent, E. H. Nat. Catal. 2020, 3, 14.  doi: 10.1038/s41929-019-0386-4

    58. [58]

      Zhou, Y.; Gao, Y.; Zhong, X.; Jiang, W.; Liang, Y.; Niu, P.; Li, M.; Zhuang, G.; Li, X.; Wang, J. Adv. Funct. Mater. 2019, 29, 1807651.  doi: 10.1002/adfm.201807651

    59. [59]

      Zhang, B.; Huang, C.; Huang, Y.; Liu, C.; Chong, X. Natl. Sci. Rev. 2020, 7, 285.  doi: 10.1093/nsr/nwz146

    60. [60]

      Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. App. Catal. B:Environ. 2020, 265, 118543.  doi: 10.1016/j.apcatb.2019.118543

    61. [61]

      Dai, L.; Qin, Q.; Zhao, X.; Xu, C.; Hu, C.; Mo, S.; Wang, Y. O.; Lin, S.; Tang, Z.; Zheng, N. ACS Cent. Sci. 2016, 2, 538.  doi: 10.1021/acscentsci.6b00164

    62. [62]

      Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895.  doi: 10.1002/anie.201908722

    63. [63]

      Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335.  doi: 10.1038/s41467-019-13375-z

    64. [64]

      Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423.

    65. [65]

      Li, Y.; Jiang, Y.; Jiang, P.; Du, S.; Jiang, J.; Leng, Y. Acta Chim. Sinica. 2019, 77, 66.
       

    66. [66]

      Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica. 2020, 78, 256.
       

    67. [67]

      Zhang, Y.; Duan, H.-X.; Wang, Y.-Q. Chin. J. Org. Chem. 2020, 40, 1514.

    68. [68]

      Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; Arquer, F. P. G. d.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.; Regier, T.; Liu, P.; Li, Y.; Luna, P. D.; Janmohamed, A.; Xin, H. L.; Yang, H.; Vojvodic, A.; Sargent, E. H. Science 2016, 352, 333.  doi: 10.1126/science.aaf1525

    69. [69]

      Tan, C.; Luo, Z.; Chaturvedi, A.; Cai, Y.; Du, Y.; Gong, Y.; Huang, Y.; Lai, Z.; Zhang, X.; Zheng, L.; Qi, X.; Goh, M. H.; Wang, J.; Han, S.; Wu, X. J.; Gu, L.; Kloc, C.; Zhang, H. Adv. Mater. 2018, 30, 1705509.  doi: 10.1002/adma.201705509

    70. [70]

      Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. J. Am. Chem. Soc. 2015, 137, 3638.  doi: 10.1021/jacs.5b00281

    71. [71]

      Zhang, J. Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Angew. Chem. Int. Ed. 2018, 57, 7649.  doi: 10.1002/anie.201803543

    72. [72]

      Gao, Y.; Wang, Q.; He, T.; Zhang, J.-Y.; Sun, H.; Zhao, B.; Xia, B. Y.; Yan, Y.; Chen, Y. Inorg. Chem. Front. 2019, 6, 2686.  doi: 10.1039/C9QI01005J

    73. [73]

      Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546.  doi: 10.1002/adma.201701546

    74. [74]

      Jia, X.; Zhang, X.; Zhao, J.; Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Shi, R.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Energy Chem. 2019, 34, 57.  doi: 10.1016/j.jechem.2018.09.011

    75. [75]

      Dou, S.; Tao, L.; Wang, R.; El Hankari, S.; Chen, R.; Wang, S. Adv. Mater. 2018, 30, 1705850.  doi: 10.1002/adma.201705850

    76. [76]

      Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746.  doi: 10.1126/science.1200448

    77. [77]

      Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S. J. Am. Chem. Soc. 2016, 138, 7965.  doi: 10.1021/jacs.6b03714

    78. [78]

      He, Q.; Wan, Y.; Jiang, H.; Pan, Z.; Wu, C.; Wang, M.; Wu, X.; Ye, B.; Ajayan, P. M.; Song, L. ACS Energy Lett. 2018, 3, 1373.  doi: 10.1021/acsenergylett.8b00515

    79. [79]

      Zhang, L.; Wang, L.; Lin, H.; Liu, Y.; Ye, J.; Wen, Y.; Chen, A.; Wang, L.; Ni, F.; Zhou, Z.; Sun, S.; Li, Y.; Zhang, B.; Peng, H. Angew. Chem. Int. Ed. 2019, 58, 16820.  doi: 10.1002/anie.201909832

    80. [80]

      Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. Adv. Energy Mater. 2019, 9, 1900881.  doi: 10.1002/aenm.201900881

    81. [81]

      Wang, W.; Wang, Y.; Yang, R.; Wen, Q.; Liu, Y.; Jiang, Z.; Li, H.; Zhai, T. Angew. Chem. Int. Ed. 2020, 59, 16974.  doi: 10.1002/anie.202005574

    82. [82]

      Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I. N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2018, 8, 1703585.  doi: 10.1002/aenm.201703585

    83. [83]

      Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P.; Duan, Y.; Ma, T.; Zheng, X. S.; Zhu, J. F.; Wang, H. J.; Gao, M. R.; Yu, S. H. J. Am. Chem. Soc. 2020, 142, 6400.  doi: 10.1021/jacs.0c01699

    84. [84]

      Du, C. F.; Sun, X.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y.; Li, S.; Liu, X.; Yan, Q. InfoMat. 2020, 2, 950.  doi: 10.1002/inf2.12078

    85. [85]

      Wu, Y.; Liu, X.; Han, D.; Song, X.; Shi, L.; Song, Y.; Niu, S.; Xie, Y.; Cai, J.; Wu, S.; Kang, J.; Zhou, J.; Chen, Z.; Zheng, X.; Xiao, X.; Wang, G. Nat.Commun. 2018, 9, 1425.  doi: 10.1038/s41467-018-03858-w

    86. [86]

      Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019, 55, 37.  doi: 10.1016/j.nanoen.2018.10.050

    87. [87]

      Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. Adv. Energy Mater. 2017, 7, 1700020.  doi: 10.1002/aenm.201700020

    88. [88]

      Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica. 2020, 78, 355.
       

    89. [89]

      Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Adv. Funct. Mater. 2020, 30, 2000556.  doi: 10.1002/adfm.202000556

    90. [90]

      Huang, W.; Ma, X. Y.; Wang, H.; Feng, R.; Zhou, J.; Duchesne, P. N.; Zhang, P.; Chen, F.; Han, N.; Zhao, F.; Zhou, J.; Cai, W. B.; Li, Y. Adv. Mater. 2017, 29, 1703057.  doi: 10.1002/adma.201703057

    91. [91]

      Han, Y.; Li, P.; Liu, J.; Wu, S.; Ye, Y.; Tian, Z.; Liang, C. Sci. Rep. 2018, 8, 1359.  doi: 10.1038/s41598-018-19876-z

    92. [92]

      Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; Zhong, J.; Jin, C.; Li, Y.; Lee, S. T.; Dai, H. Nat. Commun. 2015, 6, 10035.  doi: 10.1038/ncomms10035

    93. [93]

      Yue, X.; Li, L.; Li, P.; Luo, C.; Pu, M.; Yang, Z.; Lei, M. Chin. J. Chem. 2019, 37, 883.  doi: 10.1002/cjoc.201900150

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    6. [6]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    7. [7]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(50)
  • Abstract views(2369)
  • HTML views(579)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return